• Title/Summary/Keyword: Water Column

Search Result 2,048, Processing Time 0.024 seconds

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Mathmatical Analysis of Water Hamer Generated in an Initially Empty Piping with a Sudden Contraction Subject to Rapid Filling (빈관의 급속한 채움에 의한 관단면의 급축소 부분에서의 수격작용)

  • 우효섭;이삼희
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1989.07a
    • /
    • pp.133-143
    • /
    • 1989
  • An analytical equation was formulated using the continuity, momentum, and energy equatoins for the trensients generated in an initially empty piping with a sudden contraction subject to rapid filling with liquid. Also, two mathmatical models, "MOC" and "RCT", were applied to this particular pipping to reveal that the rigid column method is less applicable than the method of characteristics to the piping.

  • PDF

An Analysis on Remediation of Soil Contaminted with Cobalt by Solvent Flushing

  • Kim, Gyenam;Kyungsuk Suh;Huijun Won;Joonbo Shim;Wonzin Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.342-349
    • /
    • 2000
  • A soil whose texture is silt loam was collected for the study from an area around a nuclear facility in Korea. The equilibrium sorption coefficient between Co$^{2+}$in water and the soil was 1.51/kg, on the other hand, that between Co$^{2+}$ in EDTA and the soil was 0.21/kg. The values calculated by the developed nonequilibrium sorption code corresponded to the experimental values better than those calculated by the existing equilibrium sorption code. When an EDTA solution was used as a solvent to decontaminate Co$^{2+}$ in the soil column, the relative Co$^{2+}$ concentrations of the effluent were higher at 2~10 pore volumes than those of the case using water. The soil in the column was decontaminated by 95.5% of the total amount of Co$^{2+}$ after being flushed with EDTA solution of 20 pore volumes.e volumes.

  • PDF

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

Mathematical Analysis of Water Hammer Generated in an Initially Empty Piping witha Sudden Contraction Subhect to Rapid Filling (빈관의 급속한 채움에 의한 관단명의 급축소 부분에서의 수격작용)

  • 우효섭;이삼희
    • Water for future
    • /
    • v.22 no.4
    • /
    • pp.435-440
    • /
    • 1989
  • An analytical equation was formulated using the continuity, momentum, and energy equations for the trensients generated in an initially empty piping with a sudden contraction subject to rapid filling with liquid. Also, two mathematical models, MOC and RCT were applied to this particular piping to reveal that the rigid column method is less applicable than the method of characteristics to the piping.

  • PDF

A Study on the Viscous Damping Effect According to the Shape of the Inclined OWC Chamber Skirt

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, numerical analysis and experiments were performed to analyze the viscous damping effect according to the shape of the chamber skirt of the breakwater-linked inclined oscillating water column wave energy converter. Experiments were conducted using a two-dimensional mini wave tank and verified by comparing the results of a computational fluid dynamics numerical analysis. Pointed and rounded skirts were modeled to compare the effect of viscous damping when incident waves enter the chamber, and the difference in the displacement of the water surface in the chamber was compared according to the wave period for the two skirt shapes. The wave elevation in the chamber in the rounded-skirt condition was larger than the pointed-skirt condition in all wave periods, which was approximately 47% greater at 0.9 s of the incident wave period. Therefore, extracting the maximum energy through the optimal orifice is possible while minimizing the energy attenuation in the rounded-skirt condition.

Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design - (이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -)

  • Cho, Kang Woo;Kim, Tae Gyun;Lee, Byung Ha;Lee, Seul Bi;Song, Kyung Guen;Ahn, Kyu Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.599-608
    • /
    • 2009
  • This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Differences in Fraction of Na-Zeolite Particles Passed through Sand Columns Filled with Sand Particles in Different Sizes (입경(粒徑)이 다른 모래의 Column 내에서 시용(施用)된 Na-Zeolite의 이동입경별(移動粒徑別) 이동양상(移動樣相))

  • Kang, Shin-Jyung;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.240-246
    • /
    • 1985
  • This study was conducted to estimate the proper particle size of Zeolite particle as the soil conditioner for sandy soil. On sand columns filled with different size of sand fractions, Zeolite particles of different size were applied. Tap water was percolated through those columns under the same water level as paddy soil during rice growth. The > 0.1mm fraction of Zeolite was not vertically moved although the water was percolated for 96 hours. The < 0.1mm fraction of Zeolite was moved out 85.7% in 2-1mm, 32.64% in 1-0.5mm, and 24.5% in 0.5-0.25mm sand column, respectively. The proper diameter of Zeolite particle for amelioration of sandy soils widely distributed around river side in Korea was estimated as 0.25-0.1mm fraction in consideration of its pore size.

  • PDF

Evaluation of Granular Activated Carbon Process Focusing on Molar mass and size distribution of DOM (DOM의 분자량과 크기분포에 따른 입상활성탄 공정의 평가)

  • Chae, Seon H.;Lee, Kyung H .
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The primary objective of this study was to evaluate the variation of the molecular size distribution by granular activated carbon (GAC) adsorption. GAC adsorption was assessed by using the rapid small-scale column test (RSSCT) and high-performance size-exclusion chromatography (HPSEC) was used to analyze the molecular size distribution (MSD) in the effluent of GAC column. RSSCT study suggested that GAC adsorption exhibited excellent interrelationship between dissolved organic carbon (DOC) breakthrough and MSD as function of bed volumes passed. After GAC treatment, the nonadsorbable fraction which was about 25percents of influent DOC corresponded to the hydrophilic (HPI) natural organic carbon (NOM) of NOM fractions and was composed entirely of <300 molecular weight (MW) in the HPSEC at the initial stage of the RSSCT operation. The dominant MW fraction in the source water was 1,000~5,000daltons. At the bed volumes 2,500, MW <500 of GAC treated water was risen rather than it of source water. After the bed volumes 7,300 of operation, the MW 1,000~3,000 fraction was closed to about 80percents of DOC found in the GAC influent. The Number-average molecular weight (Mn) value determined using HPSEC for the effluent of GAC column was gently increased as DOC breakthrough progress. The quotient p(Mw/Mn) can be used to estimate the degree of polydispersity was shown greatest value for the GAC effluent at the initial stage of the RSSCT operation.

Numerical Prediction of Chamber Performance for OWC Wave Energy Converter (OWC 파력발전장치의 공기실 성능예측에 대한 수치적인 연구)

  • Jin, Ji-Yuan;Hyun, Beom-Soo;Liu, Zhen;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • The water elevation inside the air chamber and bi-directional air flow in the duct of Oscillating Water Column wave energy converter is one of the most important factors to evaluate the operating performance. The numerical wave tank based on the commercial software Fluent 6.2 in the present paper is employed to generate the incident waves. The numerical wave tank consists of the continuity equations, the Reynolds-averaged Navier-Stokes equations and the two-phase VOF function. The oscillating amplitude of water column in the chamber and bi-directional air flow in the duct installed on the top of the chamber are calculated, and compared with experimental data to verify the validation of the present NWT. The nozzle effects of the chamber-duct system on the relative amplitudes of the inner free water surface and air flow rate in the duct are investigated.