• Title/Summary/Keyword: Water Balance Method

Search Result 326, Processing Time 0.02 seconds

Estimation of Water Balance based on Satelite Date in the Korean Peninsula

  • Shin, Sha-Chul;Sawamoto masaki, Sawamoto-Masaki
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.97-110
    • /
    • 1997
  • Quantifying water balance components is crucial to understanding the basic hydrology and hydrochemistry. An importance of water balace studies has been emphasized from the need to grasp the actual condition of water resources and environmental changes including climatic changes. This paper proposes a method for evaluating water balance components based on the vegetation monitor using remote sensing data. Here, the evapotranspiration model adopts a direct method by using NDVI(Normalized Difference Vegetation Index) calculated from NOAA/AVHRR data and a detailed descriptionof water balance by using the evapotranspiration over the Korean Peninsula. In the study, areal distribution data sets of water balance components are produced using NDVI and a simplified water balance model. This method enables one to discuss the hydrological problems for North Korea where insufficient meteorological and hydrological data exist. The results obtained indicate the specific regional features on water inventory and fluctuation in water balance.

  • PDF

Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline (도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가)

  • Eunher Shin;Gimoon Jeong;Kyoungpil Kim;Taeho Choi;Seon-ha Chae;Yong Woo Cho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

Comparison of Daily Soil Water Contents Obtained by Energy Balance-Water Budget Approach and TDR

  • Rim, Chang-Soo
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.57-68
    • /
    • 1997
  • The daily soil water contents were obtained from the time domain reflectometry(TDR) method and energy balance-water budget approach with eddy correlation at the two small semiarid watersheds of Lucky Hills and Kendall during the summer rainy period. There was a comaprison of daily soil water content measured and estimated from these two different approaches. The comparison is valuable to evaluate the accuracy of current soil water content measuring system using TDR and energy balance-water budget approach using eddy correlation method at a small watershed scale. The degree of simiarity between the regressions of these two methods of measuring soil water content was explained by determining the correlations between these methods. Simple linear regression analyses showed that soil water content measured from TDR method was responsible for 58% and 63% of the variations estimated from energy balance-water budget approach with edy correlation at Lucky Hills and Kendall, respectively. The scatter plots and the regression analyses revealed that two different approaches for soil water content measurement at a small watershed scale have no significant difference.

  • PDF

Stabilization of Water Balance of Closed Cooling Water System with Orifice (오리피스를 통한 기기냉각수 계통 Water Balance 정상화)

  • Lee, Sung Gun;Park, Jong Hwan;Lee, Eun Su
    • Plant Journal
    • /
    • v.13 no.4
    • /
    • pp.38-40
    • /
    • 2017
  • This study is for stabilization of the water balance of the closed cooling water system. The pipe network analysis program is used for the water balance review, and the resistance factor correction is performed through the field measurement with the ultrasonic flowmeter to improve the reliability of the pipe network software. Based on this, it is aimed to derive optimal driving method through various case simulations.

  • PDF

Development of Water Saving Irrigation Method Using Water Balance Model (물수지 모형을 이용한 절수관개기법 개발)

  • Sohn , Seung-Ho;Chung , Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.3-11
    • /
    • 2004
  • The objective of this study is to develop water saving irrigation method using water balance model in order to save rural water. Daily water balance components such as irrigation water, drainage water, effective rainfall, ET, and infiltration were measured in paddy fields. Model simulations were performed for different outlet heights and ponding depths. The outlet heights and the ponding depths are 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm, respectively. Based on the simulation very shallow ponding depth of 2 cm with 10 cm outlet height showed the largest effective rainfall ratio and the smallest irrigation amount. Until the introduction of laser leveling dozer and automatic inlet control devices, it would be desirable to adopt 4cm ponding depth because of difficulty of land leveling and frequency of farmer's field visit. The results of this study will be applied in the paddy farming and can improve water use efficiency.

Estimation of Water Balance based on Satellite Data in the Korean Peninsula (人工衛星 資料에 근거한 한반도 물수지 분포의 推定)

  • 신사철
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.203-214
    • /
    • 1996
  • Quantifying water balance components is crucial to understanding the basic hydrology and hydrochemistry. An importance of water balance has been suggested in order to grasp actual condition of water resources and environmental changes including climatic changes. The present paper proposes an evaluation method of the water balance components based on vegetation monitoring from remote sensing data. In this study, evapotranspiration model adopts a directmethod by using NDVI (Normalized Difference Vegetation Index) calculated from NOAA/AVHRR data and the detailed description of water balance by using the evapotranspiration in all over the Korean Peninsula. Areal distribution data sets of evapotranspiration in all over the Korean Peninsula. Areal distribution data sets of evapotranspiration, runoff ratio, water surplus and deficit are produced using NDVI and simplified water balance model. This method enables to discuss the hydrological problems for North Korea where enough meteorological and hydrological data are unavailable.

  • PDF

Evapotranspiration and Water Balance in the Basin of Nakdong River (낙동강유역의 증발산량과 물수지)

  • 조희구;이태영
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

Climatic Water Balance Analysis using NOAA/AVHRR Satellite Images

  • KWON Hyung J.;KIM Seong J.;SHIN Sha C.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.7-9
    • /
    • 2004
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR. Quantifying water balance components is important to understand the basic hydrology. In this study, a simple method to estimate the ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data. The Morton's actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map. The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

  • PDF

Climatic Water Balance Analysis Using NOAA/AVHRR Satellite Images (NOAA/AVHRR 위성영상을 이용한 기후학적 물수지 분석)

  • Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.3-9
    • /
    • 2005
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR, Quantifying water balance components is important to understand the basic hydrology, In this study, a simple method to estimate actual ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data, The Mortons actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map, The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

RUNOFF ESTIMATION FROM TWO MID-SIZE WATERSHEDS USING SWAT MODEL

  • Kim, Chulg-yum;Kim, Hyeon-jun;Jang, Cheol-hee;Kim, Nam-won
    • Water Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.193-202
    • /
    • 2003
  • SWAT model was applied to estimate daily stream flow for Yongdam and Bocheong watersheds in Korea. The model was calibrated and validated for the two watersheds and a new routine was added to analyze runoff process in paddy fields. The model efficiencies for two watersheds were 0.77 and 0.65 for the calibration period, and 0.76 and 0.50 for the validation period, respectively. It showed that water balance method simulated the runoff from paddy fields more precisely than CN method in SWAT. As results, the SWAT model is applicable to Korean watersheds, and more accurate estimation is possible using daily water balance method in paddy fields.

  • PDF