• 제목/요약/키워드: Water Absorption Cycles

Search Result 57, Processing Time 0.021 seconds

The Structural, Electrical, and Optical Properties of ZnO Ultra-thin Films Dependent on Film Thickness (ZnO 초박막의 두께 변화에 따른 구조적, 전기적, 광학적 특성 변화 연구)

  • Kang, Kyung-Mun;Wang, Yue;Kim, Minjae;Lee, Hong-Sub;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • We investigated the structural, electrical and optical properties of zinc oxide (ZnO) ultra-thin films grown at $150^{\circ}C$ by atomic layer deposition (ALD). Diethylzinc and deionized water were used as metal precursors and reactants, respectively, for the deposition of ZnO thin films. The growth rate per ALD cycle was a constant 0.21 nm/cycle at $150^{\circ}C$, and samples below 50 cycles had amorphous properties due to the relatively thin thickness at the initial ALD growth stage. With the increase of the thickness from 100 cycles to 200 cycles, the crystallinity of ZnO thin films was increased and hexagonal wurtzite structure was observed. In addition, the particle size of the ZnO thin film increased with increasing number of ALD cycles. Electrical properties analysis showed that the resistivity value decreased with the increase of the thin film thickness, which is correlated with the decrease of the grain boundary concentration in the thicker ZnO thin film due to the increase of grain size and the improvement of the crystallinity. Optical characterization results showed that the band edge absorption in the near ultraviolet region (300 nm~400 nm) was increased and shifted. This phenomenon is due to the increase of the carrier concentration with the increase of the ZnO thin film thickness. This result agrees well with the decrease of the resistivity with the increase of the thin film thickness. Consequently, as the thickness of the thin film increases, the stress on the film surface is relaxed, the band gap decreases, and the crystallinity and conductivity are improved.

Disintegration process and micro mechanism of mudstone under dry-wet cycles

  • Ji Chen;Ruyu Huang;Xinyu Luo;Xin Liao;Qiang Tang
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • With the rapid development of highways and railways, series of traffic safety issues emerged because of mudstone disintegration. To research on the mechanism and further guarantee the stability and safety of transportation infrastructure built on or near mudstone formations, the mudstone disintegration test of mudstone was carried out based on mudstone and sandy mudstone. The element types, cementation characteristics and pore characteristics of the tested specimens were studied by means of Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Image Pro Plus (IPP). The disintegration index of mudstone was approximately 1%, and even some specimens were difficult to be calculated, while the disintegration index of sandy mudstone is approximately 8.7%. According to the results, the two mudstones belong to grade II and III disintegration respectively, of which the sandy stone presents more extensive disintegration than mudstone. This phenomenon was distinguished that, the clay minerals of mudstone are approximately 25% more abundant than those of sandy mudstone, and the unit pore area is 20 ㎛2 larger, which result in different microstructure and water absorption capacities. In the liquid phase, the ions in the mudstone specimens were exchanged and combined with water molecules in the environment during the whole disintegration process. This results in continuous spalling and fragmentation of clay minerals, the emergence of secondary fractures, and the deepening of primary fractures.

Mechanical properties and durability of roller-compacted concrete incorporating powdered and granulated blast furnace slag in frost regions

  • Morteza Madhkhan;Mohsen Shamsaddini;Amin Tanhadoust
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.467-480
    • /
    • 2024
  • The mechanical properties and durability of concrete pavements may be degraded in extreme situations, resulting in the need for partial repair or total replacement. During the past few decades, there has been a growing body of research on substituting a portion of Portland cement with alternative cementitious materials for improving concrete properties. In this study, two different configurations of powdered and granulated blast furnace slag were implemented, replacing fine aggregates (by 12 wt.%) and Portland cement (by 0, 20, 40, and 60 wt.%) in the making of roller-compacted concrete (RCC) mixes. The specimens were fabricated to investigate the mechanical properties and durability specifications, involving freeze-thaw, salt-scaling, and water absorption resistance. The experimental results indicated that the optimum mechanical properties of RCC mixes could be achieved when 20-40 wt.% of powdered slag was added to concrete mixes containing slag aggregates. Accordingly, the increases in compressive, tensile, and flexural strengths were 45, 50, and 28%, in comparison to the control specimen at the age of 90 days. Also, incorporating 60 wt.% of powdered slag gave rise to the optimum mix plan in terms of freeze-thaw resistance such that a negligible strength degradation was experienced after 300 cycles. In addition, the optimal moisture content of the proposed RCC mixtures was measured to be in the range of 5 to 6.56%. Furthermore, the partial addition of granulated slag was found to be more advantageous than using entirely natural sand in the improvement of the mechanical and durability characteristics of all mixture plans.

Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH3/H2O Mixture (NH3/H2O 혼합냉매를 사용한 압축/흡수식 히트펌프 시스템의 흡수기 최적화에 관한 실험적 연구)

  • Kim, Ji-Young;Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • This research aims todevelopa compression/absorption hybrid heat pump system using an $NH_3/H_2O$ as working fluid.The heatpump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a desorber, a desuperheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above $90^{\circ}C$ using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangementof the plate heat exchangers with regard tothe concentration and distribution at the inlet of the absorber.

Optical Behavior of Azobenzene Functionalized Dendrimer in Organic Monolayers (아조벤젠이 기능화된 덴드리머 유기단분자막의 광학적 거동)

  • 신훈규;손정호;김병상;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.627-633
    • /
    • 2002
  • Many isolated featureless domains were explicitly observed even at the air-water interface. We measured the surface pressure shift originating from the photo-isomerization of azobenzene units on the periphery of dendrimers. The maximum surface pressure was gradual1y increased and saturated by cyclic compression and decompression. By irradiation of 365 [nm] light, the surface pressure was increased, which was originated by the photo-isomerization process of the azobenzene group on the periphery from trans to cia form. The increase of the dipole moment ($\mu$), which may increase the interaction among Azo dendrimer molecules, made an important role on surface pressure shift. From the absorbance spectrum by UV irradiation and heat treatment, we can see that the absorbance in the UV region decreases with the increase of the UV irradiation time, but the peak at 350 m, characteristic of dendrimers in the LB monolayers, was not shifted until four irradiation cycles. This suggests that optical behavior and morphological change are affected by the functional group and the symmetric chain.

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor

  • Turk, Kazim;Kina, Ceren;Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • In this study, deep learning and k-Nearest Neighbor (kNN) models were used to estimate the sorptivity and freeze-thaw resistance of self-compacting mortars (SCMs) having binary and ternary blends of mineral admixtures. Twenty-five environment-friendly SCMs were designed as binary and ternary blends of fly ash (FA) and silica fume (SF) except for control mixture with only Portland cement (PC). The capillary water absorption and freeze-thaw resistance tests were conducted for 91 days. It was found that the use of SF with FA as ternary blends reduced sorptivity coefficient values compared to the use of FA as binary blends while the presence of FA with SF improved freeze-thaw resistance of SCMs with ternary blends. The input variables used the models for the estimation of sorptivity were defined as PC content, SF content, FA content, sand content, HRWRA, water/cementitious materials (W/C) and freeze-thaw cycles. The input variables used the models for the estimation of sorptivity were selected as PC content, SF content, FA content, sand content, HRWRA, W/C and predefined intervals of the sample in water. The deep learning and k-NN models estimated the durability factor of SCM with 94.43% and 92.55% accuracy and the sorptivity of SCM was estimated with 97.87% and 86.14% accuracy, respectively. This study found that deep learning model estimated the sorptivity and durability factor of SCMs having binary and ternary blends of mineral admixtures higher accuracy than k-NN model.

Effects of Milk Protein-Gum Conjugates on The Characteristics of The Dough and Staling of Bread Made of Frozen Dough During Freeze-Thaw Cycles (우유단백질-검류 복합체 첨가가 제빵용 반죽의 물리적 특성과 식빵의 노화에 미치는 영향)

  • Yun Young;Kim Young-Ho;Kim Young-Su;Choi Sung-Hee;Eun Jong-Bang
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Milk protein-gum conjugates were prepared by Maillard reaction and added to dough to investigate the possibile use of them as anti-staling agents in bread Four different types of conjugates were added to dough, i.e., $casein-\kappa-carrageenan$ (CK), casein-sodium alginate (CA), $whey-\kappa-carrgeenan$(WK) and whey-sodium alginate (WA). Their addition to flour increased the gelatinization temperature, water absorption and development time of the dough. Extensogram showed the increased resistance to extension of the doughs resulting from the addition of the conjugates. Moisture content of the breads decreased during storage at $5^{\circ}C$ for 4 days. The breads added with conjugates had lower extents of the decreases than non-treated degrees and maintained higher moisture content than non-treated bread after 3 freeze-thaw cycles. The storage degrees at $5^{\circ}C$ for 4 days affected the increased bread hardness, but, addition of WA conjugate decreased extents of the increases. Therefore, milk protein-gum conjugates, especially WA conjugate, contributed to retarding staling of breads

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change (도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구)

  • Sung, Hyun-Chan;Hwang, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.