• Title/Summary/Keyword: Wastewater treatment process

Search Result 1,431, Processing Time 0.057 seconds

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

An Efficient Sulfuric Acid- and Hydrazine-based Process for Recycling Wastewater Generated From U(VI)-Contaminated Soil-Washing

  • Hyun-Kyu Lee;Byung-Moon Jun;Tack-Jin Kim;Sungbin Park;Seonggyu Choi;Jun-Young Jung;Hee-Chul Eun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2024
  • This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.

Advanced Treatment of Shipboard Sewage by RCM Process with BM (복합미생물제제를 이용한 RCM공법의 선박오수 처리장치 적용에 관한 연구)

  • Ha, Shin-Young;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.451-456
    • /
    • 2014
  • Lab scale experiment was carried out to study biological wastewater treatment technology developed for shipboard. RCM process using BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. RCM process is an environmental friendly treatment system, with minimum production of sludge. In the test, BOD5, CODcr, T-N and T-P were reduced a 96%, 97%, 78% and 81.68% respectively. From the result it was suggested that RCM process with BM might be a suitable process for shipboard sewage treatment, maintenance of useful microorganisms and creating special environment as the SDC tank is circulating in the non-biodegradable organics sludge generated during the wastewater treatment, thus reducing the amount of sludge generated. Therefore, the RCM process does not require additional equipment to strengthen it to meet the marine pollution standards.

Removal of a Heavy Metal from Wastewater using Membrane Process and Instrumental Analysis (Membrane 공정을 이용한 폐수로부터 중금속의 제거 및 기기분석)

  • Park, Kyung-Ai;Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.229-234
    • /
    • 1995
  • Membrane process has been applied widely to petroleum chemistry, fine chemistry, polymer, electronics, food, bioprocessing, and wastewater treatment process. Membrane process has advantage that there's no phase change through separation, energy consumption is smaller than other separation processes. And equipment investment and operation cost are inxpensive too. We prepared the silicone rubber membrane and then separated the heavy metal ion from wastewater. Silicone rubber membrane was prepared using a superitical fluid process and heavy metal ions were separated from the chromium nitrate, ferric sulfate, cupric sulfate, nickel sulfate aqueous solution. The pressure difference between top and bottom of separation apparatus was preserved by vacuum pump, and the removal amount of heavy metal at each separation step were analyzed by instrumental analysis, AAS. The surface and pore of silicone rubber membrane was investigated using SEM, and the capability of wastewater treatment using a silicone rubber membrane was proposed as calculated removal rate of heavy metal after comparing removal amount of heavy metal to amount of heavy metal in mother solution by AAS analysis.

  • PDF

Assessment of Best Available Technology of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피가공 및 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for leather tanning and finishing industry. For the evaluation BAT, a subcategorization for the industry considering wastewater characteristics, source equipments, raw material and so on should be suggested. Three subcategories: A) Unharing, Chrome Tan, Retan-Wet Finish, B) Chrome Tan, Retan-Wet Finish, and C) Furskins were proposed in this study. Wastewater discharged from the each category contains high concentration of COD, chrome, nitrogen and sulfide. In particular, the concentration of nitrogen from the subcategory A is significantly greater. Twenty sites were surveyed and wastewater qualities were analyzed. Therefore, six different technologies were applied to the subcategory A for the end-of-pipe treatment technology, and a technology was used in the subcategory B and C, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options for each subcategories: A) primary chemical precipitation + modified Ludzack-Ettinger process (MLE) + secondary chemical precipitation, B) chemical precipitation + typical activated-sludge process + Fenton oxidation, C) chemical precipitation + typical activated-sludge process + batch Fenton oxidation or batch activated carbon treatment were selected as the BAT, respectively.

Characteristics of Wastewater Treatment by the Continuous-Flow Fixed Biofilm Process Using Porous Fly Ash Carrier (다공성 석탄회 담체를 이용한 연속류식 고정 생물막 공정의 폐수 처리 특성)

  • Ryu, Jae-Chun;Kim, Young-Ho;Yang, Hyun-Soo;Kwak, Doo-Won;Yoo, Sung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.200-205
    • /
    • 2005
  • We have prepared the porous carrier that has high capacity for immobilization of microorganisms and adsorption capacity for cation using fly ash in the previous work. In this study, we investigated the characteristics of piggery wastewater treatment in comparison with commercial carrier and conventional activated sludge process by continuous-flow fixed biofilm process in laboratory scale at the same experimental conditions to develop the biofilm process using porous fly ash carrier for wastewater treatment. As a result, the prepared fly ash carrier showed that removal efficiency of COD, TN and $NH_4{^+}-N$ items were 80%, 77% and 65%, respectively, which were higher efficiency than the commercial carrier and conventional activated sludge process. And the result of measurement for immobilized microorganisms after treatment showed higher capacity than the commercial carrier, and it was confirmed by SEM observation on fly ash carrier that the colony of microorganisms was stably formed.

A Study on Current Energy Consumption and Recycling at Public Wastewater Treatment Plants in Korea (국내 공공하수도 시설의 에너지 사용 및 자원화실태 조사연구)

  • Park, Seungho;Kim, Byongjoo;Bae, Jae-Ho;Lee, Cheol Mo;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.539-549
    • /
    • 2007
  • To establish effective and prompt measures for energy conservation in public wastewater treatment plants in Korea, energy consumption rates in 233 utilities in 9 provinces and 7 metropolitan cities are investigated and compared to the rest of the world. Mean load factor for wastewater treatment utilities is 74.9% and those for influent pumps and aeration blowers are 56.2% and 61.0%, respectively. Mean electrical energy usages as the key performance indicators are $0.243kWh/m^3$ for overall sewage treatments and 2.07 kWh per unit kg BOD removal. Digester gas as one of major byproducts in the process amounts to $382,000m^3/day$ nationwide. While major part of the digester gas is used for sludge heating, only 7.3% of the gas is utilized for electricity generation. Both efficiencies for BOD removal and digestion gas generation are considerably lower than those in USA and EU utilities due to low concentration of organic material in influent wastewater. Such low energy regeneration, in turn, results in significantly higher energy consumption in Korean plants, compared to that in USA and EU ones.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

Effect of graphene oxide on polyvinyl alcohol membrane for textile wastewater treatment

  • Zahoor, Awan;Naqvi, Asad A.;Butt, Faaz A.;Zaidi, Ghazanfar R.;Younus, Muhammad
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.121-128
    • /
    • 2022
  • A tremendous amount of energy resources is being wasted in cleaning wastewater to save the environment across the globe. Several different procedures are commercially available to process wastewater. In this work, membrane filtration technique is used to treat the textile wastewater because of its cost effectiveness and low environmental impacts. Mixed Matrix Membrane (MMM) consist of Polyvinyl Alcohol (PVA) in which Graphene Oxide (GO) was added as a filler material. Five different membranes by varying the quantity of GO were prepared. The prepared membrane has been characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Water Contact Angle (WCA). The prepared membranes have been utilized to treat textile wastewater. The synthesized membranes are used for the elimination of total dissolve solids (TDS), total suspended solids (TSS), Methylene blue (MB) dye and copper metallic ions from textile wastewater. It is concluded that amount of GO has direct correlation with the quality of wastewater treatment. The maximum removal of TDS, TSS, MB and copper ions are found to be 7.42, 23.73, 50.53 and 64.5% respectively and are achieved by 0.02 wt% PVA-GO membrane.