• Title/Summary/Keyword: Wastewater treatment plants

Search Result 484, Processing Time 0.038 seconds

Development of the Monitoring System for maintaining On-site Wastewater Treatment Plants (소규모 현장 오수처리시설의 유지관리를 위한 Monitoring System 개발)

  • Cho, Young-Hyun;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.417-420
    • /
    • 2001
  • The monitoring system for maintaining on-site wastewater treatment plants(Biofilter) was developed. Proposed system applied PLC(Programmable Logic Controller) technique. In process of development, the research against the monitoring parameters which will be able to represent condition and operation of the plants was accomplished. These parameters are ORP(Oxidation-Reduction Potential), Water Level, Pump and Power on/off. Also, to measure, collect, transfer and display these parameters, DMU(Data Measurement Unit), MCU(Main Controller Unit) and Display Board were produced.

  • PDF

Investigation of Treatment Efficiency for Advanced Processes of Water Treatment Plants in Korea (국내 정수장 고도정수처리 공정에서 공정별 처리효율 조사)

  • Mun, Sung-Min;Choi, Suing-Il;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • Advanced processes such as ozonation or activated carbon filtration (ACF) in water treatment plants have been used in Korea since 1994. At present, seventeen drinking water treatment plants are currently operating. This survey compares the treatment performance of advanced processes in eight plants which have comparable water quality data. The three parameters (DOC, $UV_{254}$, and $KMnO_4$ consumption) of water quality were selected as an indicator of treatment efficiency. The treatment efficiency of ozonation and ACF processes was found to vary with large deviations in each plant. Treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption by post ozonation ranged from 3 to 11%, 6 to 33%, and 12 to 28% respectively. On the other hand, for ACF, treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption ranged from 7 to 38%, 8 to 48%, and 16 to 66% respectively. These large deviations indicate the advanced processes of water treatment plants to be further optimized.

Convergence Study on Organic Sludge Treatment System (유기성 슬러지 처리 시스템에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.213-217
    • /
    • 2020
  • An eco-friendly water purifier was developed using natural minerals, plants, and sludge from water purification plants. A wastewater complex treatment system using this water purification agent was developed. The wastewater complex treatment system goes through the process of inflow of contaminated water, input of water purification agent, operation of a pressurized flotation device, sludge flotation, sludge collection and treatment water discharge. This device was applied to the removal of green algae in livestock desorption liquid, broiler washing water, factory wastewater, sewage treatment plant and pond to obtain excellent removal rate. The use of natural water purification agents for organic waste purification has not been investigated.

Studies on the Effluent Characteristics of Dyeing Wastewater by Textile Classification (섬유 형태에 따른 염색폐수 배출특성 연구)

  • Lee, Soo-Hyung;Park, Jung-Min;Park, Sang-Jung;Jeong, Je-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.881-888
    • /
    • 2007
  • In order to investigate the characteristics of the non-biodegradable material, the $BOD_5/COD_{Cr}$ ratio was used. The average ratio of industrial complex's influent wastewater was 2.29~2.96, the effluent ratio was 4.29~19.0. The removal efficiency of $UV_{254}$ by physicochemical treatment was 22.8~94.7% and 5.3~77.2% by biological treatment, respectively. Of the wastewater removal efficiency for each of the items, the $BOD_5$ treatment efficiency was the greatest at 97.3% and the color & TN treatment efficiency was 40~70%. The study of the economical assessment showed that the complex as well as the individual companies spent 722~1,298 won for each ton of treated wastewater. All of the wastewater treatment facilities spent the most money on chemicals needed to treat the wastewater. The total cost for Nylon manufacturing wastewater treatment plant was the greatest while the total cost for cotton manufacturing wastewater treatment plant turned out to the lowest. As respects of removal efficiency and economocal assessment, Polyester A and Cotton manufacturing wastewater treatment plants were better effective than a dyeing industrial complex wastewater treatment plant.

Estimation on the Design Capacities of Residuals Treatment Facilities by the Quantity of Dewatered Sludge Generated from Water Treatment Plants (정수장에서 발생된 탈수슬러지의 량에 의한 배출수처리시설용량에 대한 평가)

  • Moon, Yong-Taik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.715-723
    • /
    • 2004
  • The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS occurs under quiescent conditions in the primary clarifier, where suspended solids are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. The relative solid and liquid fractions of a slurry are most commonly described by the solids concentration, expressed as mg/L or percent solids. The purpose of the present investigation is to estimate a suitability on the design capacities of residuals treatment facilities by the quantity of dewatered sludge generated from water treatment plants.

A Study on the Advanced Treatment of Wastewater by Plants (식물을 이용한 오수의 고도처리에 관한 연구)

  • 이용두;김현희
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • In recent years increasing production and disposal of wastewater have caused an accelerated eutrophication of receiving waters. Therefore, in order to alleviate the detrimental impact of wastewater discharge, there is an increasing demand for removing the main nutrients, nitrogen and phosphorus, as well as the organic content of the waste water prior to disposal. This is effectively achieved by extended conventional treatment technology. However, the working expenses and energy requirements of such advanced treatment systems are rather high. So in a sparsely populated rural community is required development of wastewater treatment system combined with the regional characteristics. In this study, the systems are planted with Reeds and Amaryllis In A.C and estimated purification potential of system. The results obtained are as follows. BOD removal rate is 20% in the early stage, the last removal rate is 35% in A.C process and is 65% in Amaryllis+A.C process and is 50% in Reed+A.C process. T-N removal rate by Amaryllis is average 2.6g/$m^3$ㆍd, T-N removal rate by Reed is average 1.76g/$m^3$ㆍd. T-P removal rate by Amaryllis is average 0.27g/$m^3$ㆍd, T-P removal rate by Reed is average 0.25g/$m^3$ㆍd. BOD removal rate constant with retention time is 1.4494(1/d), T-N removal rate constant is 0.5428(1/d), T-P removal rate constant is 0.5287(1/d).

  • PDF