• Title/Summary/Keyword: Wastewater treatment plant (WWTP)

Search Result 63, Processing Time 0.02 seconds

Identification of pollutant sources and evaluation of water quality improvement alternatives of the Geum river

  • shiferaw, Natnael;Kim, Jaeyoung;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.475-475
    • /
    • 2022
  • The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.

  • PDF

Ecological Risk Assessment of Pharmaceuticals in the Surface Water Near a Pharmaceutical Manufacturing Complex in Korea (제약단지 인접 지역 지표수의 잔류 의약물질 생태위해성평가)

  • Park, Suhyun;Kang, Habyeong;Shin, Hyesoo;Ryoo, Ilhan;Choi, Kyungho;Kho, Younglim;Park, Kyunghwa;Kim, Kyungtae;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.45-64
    • /
    • 2020
  • Objectives: Limited information is available on the presence and associated ecological risks of pharmaceutical residues in aquatic environments near pharmaceutical manufacturing areas in Korea. In this study, we investigated the current state of pharmaceutical contamination and its associated ecological risks in streams near a pharmaceutical manufacturing complex. Methods: Seven pharmaceuticals (acetaminophen, clarithromycin, diclofenac, diphenhydramine, ibuprofen, mefenamic acid and roxithromycin) were measured in water samples collected from the streams near a pharmaceutical manufacturing complex. A predicted no-effect concentration (PNEC) was derived using either the assessment factor method or species sensitivity distribution method. In addition, a hazard quotient for each pharmaceutical was calculated by dividing its measured environmental concentration by its PNEC. Results: Samples collected downstream from the wastewater treatment plant (WWTP) had higher concentrations of pharmaceuticals than those collected from the reference site (upstream). Moreover, pharmaceutical concentrations were greater in ambient water than in the final effluent from the WWTP, which suggested that non-point sources were contributing to the contamination of the ambient water environment. Some of the target pharmaceuticals exhibited a hazard quotient >1, indicating that their potential ecological effects on the aquatic environment near the pharmaceutical industrial area should not be ignored. Conclusion: This study demonstrated that the pharmaceutical manufacturing area was contaminated with residual drugs, and that there was a possible non-point source near the WWTP effluent discharge area. The results of this study will aid in the development of management plans for pharmaceuticals, particularly in hotspots such as pharmaceutical industrial sites and their vicinities.

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Evaluation of Removal Efficiencies of Micropollutants in Wastewater Treatment Plants (산업폐수처리장에서의 미량유해물질 제거율 평가)

  • Lee, In-Seok;Sim, Won-Jin;Oh, Jeong-Eun;Kim, Chang-Won;Chang, Yoon-Seok;Yoon, Young-Sam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • 66 micropollutants analyses in 9 wastewater treatment plants(WWTPs) along Nak-dong river were implemented to identify the concentrations and removal efficiencies before and after treatment processes. As a result of study, the concentration levels discharged from WWTP effluents to water system were below the water quality criteria and the levels of other studies. The removal efficiencies were 84.6%(DAF/CCR) and 81.6%(AC) for 1,4-dioxane. Phenol, Clphs and PAHs were removed 94.6%, 66.4% and 80.6% respectively by the activated sludge(AS) process. The removal efficiencies of Clbzs were 45.3% for the activated sludge(AS) process and 60.6% for the activated carbon(AC) process. However, other processes besides AS and AC, the removal efficiencies of Clbzs were very low(<20%). The sand filtration(SF) process that could remove particle matters showed the best efficiency for PCDDs / Fs removal$(\geq99%)$. However, in case of relatively low PCDDs/Fs concentration level in influent, the removal efficiency was not so high$(\leq50%)$.

Analysis of UV Filters in Water using Stir Bar Sorptive Extraction (SBSE) and GC/MS-MS (교반막대 추출법과 GC/MS-MS를 이용한 수중의 자외선 차단제 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1037-1047
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC/MS-MS) has been developed, allowing the simultaneous multi-analyte determination of seven UV filters in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 12.9%). The extraction efficiencies were above 84% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~8.6 ng/L and 6.8~27.5 ng/L, respectively. The developed method offers the ability to detect 8 UV filters at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 7 UV filters except of benzophenone (BP). The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Analysis of Dominant Microorganisms of Bulking Sludge at Low Dissolved Oxygen Concentration using 16S rRNA Sequences (16S rRNA 염기서열을 이용한 낮은 용존산소농도에서 발생한 벌킹슬러지의 우점종 분석)

  • Kim, Yun-Jung;Park, Eun-Hye;Kim, Gyu-Dong;Nam, Kyoungphile;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.506-511
    • /
    • 2004
  • Maintaining dissolved oxygen (DO) at sufficiently low concentration in the aeration tank at a wastewater treatment plant (WWTP) is essential for reduction of the costs of operation and maintenance. On the other hand, the low DO level may result in adverse effect on the integrity of the activated sludge, A typical and disastrous outcome frequently experienced is the outgrowth of filamentous microorganisms, which is called as filamentous bulking, In addition to the traditional methods such as sludge settleability and microscopic observation of the culture, molecular techniques including polymerase chain reaction (PCR) amplification followed by 16S rRNA sequencing were applied to identify filamentous bacteria present in bulking sludge under a condition of low DO concentration, Two morphologically distinct groups, presumably consisting of Sphaerofilus nafans, and Eikelboom Type 1701 or Type 1851, were identified through microscopic observation. They were further confirmed by subsequent 16S rRNA sequencing. Dominant filamentous bacteria identified by the molecular techniques were consisted of three major groups. Sequences of partial 16S rRNA cloned showed that the filamentous bulking organisms were closely related to Eikelboom Type 021N and Eikelboom Type 1701, and Sphaerotilus natans, respectively. Molecular methods were found to possess a strong potential of direct examination of the microbial community of an activated sludge system.

Hydrochemical Effects of Tributaries and Discharged Waters in the Yangjae Stream Flowing Peri-urban Area (하천유지용수와 지천 유입에 따른 도시하천 양재천의 수리화학적 변화 연구)

  • Kim, Youn-Tae;Chung, Euijin;Park, Jonghoon;Woo, Nam C.
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.678-687
    • /
    • 2018
  • The purpose of this study was to understand the unique and complicated feature of urban stream receiving various inflows. The Yangjae stream, the second tier of the Han River, runs through the southern parts of Seoul, Korea and its middle part flows on the boundary of Seoul where land use is actively changing. Stream flow was greatly influenced by rainfall. Other than rainfall events, effluent discharge from wastewater treatment plant (WWTP) comprised 51 % of stream flux. As a result, majority ions water chemistry was changed at the receiving zone of the discharged effluent (Zone A). Its contribution increased to 69.9 % at the second sampling period with low stream flow. In the middle zone, inflows from the northern area, recently developed to a residential district showed low $NO_3-N$ and high $HCO_3$, Ca, $SO_4$, and $SiO_2$ indicating the effects of groundwater and concrete. One inflow (T-8), with extremely high Na and Cl, median $SiO_2$, was assessed to have anthropogenic influence, however its contribution to main stream was under 1 %. Road construction near Y-13 also affected water chemistry leading to the highest Na and Cl concentration. These hydro chemical changes can be critically used to evaluate the changes in water budget and fate of chemicals in a peri-urban watershed occasioned by human activities on the Yangjae.

A Study on the Runoff Characteristics and Water Quality Management of Seung-Gi Stream Area (승기천 유역의 오염물 유출특성 및 수질관리방안 연구)

  • Seo, Hyung-Joon;Chung, Sang-Won;Park, Mi-Ok;Lee, Byung-Ryul
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.251-263
    • /
    • 2001
  • This study was conducted to provide a basic information for recovery plan of Seung-Gi Stream which is a major stream of Incheon metropolitan area. Source and characteristics of pollutants were analyzed and studied. Samples were taken 10 rounds in 5 sections in Seung-Gi stream. Annual pollutants loads and sectional characteristics of pollutants loads were investigated regarding flow rate, pH, DO, SS, $BOD_5$, $COD_{Cr}$, T-P, TKN and concentrations of Zn, Cd, Cu, Cr atoms which enter into Seung-Gi stream during rainy and dry season respectively. As one came close to the Nam-Dong Industrial Complex, sectional discharge loads were heavy and water quality was failed to meet the standard by "Environmental Standard of River Quality". As a result, heavy load of pollutants in Seung-Gi stream was considered to influence negatively the sea water quality of Incheon. Solution plans to solve problems are as follows. First, circulation of treated water at Seung-Gi WWTP(Wastewater Treatment Plant) and retreated water by URC(ultra rapid coagulation) process treat with that. Second, sewage and wastewater is gathered, make it disposed. After then, we circulate treated water. If solution plans be applied, we can predict water quality. Then we could grope for how make to recovery role of Seung-Gi stream as stream.

  • PDF

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons(PAHs) in Riverine Waters of Ulsan Coast, Korea (울산연안 하천에서 다환방향족탄화수소 분포특성)

  • You, Young-Seok;Lee, Jeong-Hoon;Park, Jeong-Chae;Kim, Dong-Myung;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.398-405
    • /
    • 2012
  • PAHs(Polycyclic Aromatic Hydrocarbons) in coastal area and estuary adjacent to urban area and industrial activities region are mainly introduced into marine environment via atmosphere and river. This study which is evaluated the distribution characteristics of PAHs discharge from rivers and sewage disposal water which flowing into Ulsan bay, and were carried out in Jun of dry season and in Auguest of wet season, 2008. The water samples from eight main rivers and Youngyeon WWTP(Wastewater Treatment Plant) flowed into Ulsan bay were taken for analysis of dissolved PAHs. The range and mean values of dissolved PAHs concentrations showed 10.30 to 87.88 ng/L, its mean 36.94 ng/L in dry season and 10.30 to 69.57 ng/L, its mean 24.37 ng/L in wet season. The distribution of dissolved PAHs showd the high concentrations in the Gungcheoncheon which is flowed from urban and industrial area. The ranges and means values of the loading fluxes were estimated with 0.04 to 8.27 g/day, its mean 2.05 g/day in dry season, and 0.03 to 4.77 g/day, its mean 1.61 g/day, in wet season. The loading flux showed the highest value in Taewha river due to the high flow rate and the urban activity. The composition patterns of dissolved PAHs compound showed most of the trend occupying low molecuar weight PAHs than high molecular weight PAHs. These results were due to physical and chemical characteristics of PAHs compound, and were similar to those of other studies. The concentrations of dissolved PAHs in this study are lower than those of other studies, and the level of PAHs pollution appeared to be not serious in reverine waters of Ulsan coast.

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD (Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석)

  • Son, Hee-Jong;Song, Mi-Jung;Kim, Kyung-A;Yoom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.