• Title/Summary/Keyword: Wastewater purification

Search Result 154, Processing Time 0.032 seconds

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

One-step microwave synthesis of magnetic biochars with sorption properties

  • Zubrik, Anton;Matik, Marek;Lovas, Michal;Stefusova, Katarina;Dankova, Zuzana;Hredzak, Slavomir;Vaclavikova, Miroslava;Bendek, Frantisek;Briancin, Jaroslav;Machala, Libor;Pechousek, Jiri
    • Carbon letters
    • /
    • v.26
    • /
    • pp.31-42
    • /
    • 2018
  • Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.

Current Status of Applied Korean Patents Regarding the Deep Sea Water (해양심층수 관련 국내 특허출원 동향)

  • Chung, Kap-Taeck;Lee, Sang-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.261-271
    • /
    • 2009
  • Deep sea water exists at depths of over 200m under the sea. As no sunlight reaches it, photosynthesis does not take place within it, and it contains no organic matter. In addition, its temperature is maintained at a stable low level throughout the year, so it does not get mixed with the sea water on the surface. It contains a large amount of nutritious salts, whose cleanness is maintained. It is a marine resource that has matured for a long period of time. Research into deep sea water, which started in the 1970s, has been made around the whole world, including the USA and Japan. In Korea, research has been active in this area since 2000. As there has been a good amount of research into industrial applications for deep sea water, since 1993, patents for the relevant technologies have been applied. This paper intends to provide a resource to researchers of deep sea water, by summarizing of all domestic deep sea water-related patents applied with Korean Intellectual Property Office from 1993 to 2008. This research was conducted using a computer and KIPRIS Database owned by the Korea Institute of Patent Information. 'Deep sea water' was used as the search keyword. A total of 222 Korean patents relating to deep sea water have been registered on the basis of IPC. Of these, 126 patents relate to the manufacturing and the treatment of foods, foodstuffs, or non-alcoholic beverages(A23L), while 50 patents relate to the production for medical, dental, or cosmetic purposes(A61K). 38 patents relate to water purification, treatment of wastewater, sewage and sludge (C02F), while 8 patents relate to fishery and farming(A01K). In summary, it was found that studies for the practical use of deep sea water have been conducted in relation to the manufacturing and the treatment of foods, foodstuffs, beverages, and cosmetics.

A Feasibility Study for Renewable Energy from Sewage Sludge Biogas (하수슬러지 Biogas의 신재생에너지화 타당성 연구)

  • Kang, Ho;Lee, Hye Mi;Cho, Sang Sun;Park, Sun Uk;Jeong, Ji Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.

A Study on Application and Verification of Heavy Water Treatment Effects Using Plant Cultivation (Vegetation) on Floating Island (식생섬에 의한 중수처리 효과 검증과 적용에 관한 연구)

  • Kwon, Dong Min;Kwon, Soon Hyo;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This this study was conducted with the aim of doing experiment on the effect of water purification by using an artificially built plant island, which is one of the eco-techniques, and aquatic plants as a plan for the reuse of water for obtaining water resources, thereby analyzing the removed quantity, and applying the experimental results to the reuse of water. As a result of doing experiments, this study obtained a good measured value of BOD (biochemical oxygen demand) 4.7mg/L, and COD (chemical oxygen demand) 7.2mg/L below the heavy water standard of BOD 10mg/L and COD 20mg/L, respectively. The chromaticity showed 89.2% removal efficiency, but final treated wastewater was found to show chromaticity 58 degrees exceeding chromaticity 20 degrees which are the water quality standard of the reuse of water. The results revealed that T-N produced 27% removal efficiency on an average while T-P produced 38% removal efficiency on an average, showing that the removal effect of N & P wasn't big. According to the currently enforced "Water Quality Standard of Heavy Water by Use", the use of water for sprinkling and landscaping was found to be available. Accordingly, this study suggested a nature-friendly, economically-efficient, and eco-technological water treatment technique which will make it possible to overcome the limit of the existing physio-chemical water treatment technology, reduce the costs for maintenance and facilities, and also reduce the limit of space restraint for installation of facilities.

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

Competitive Adsorption for Binary Mixture of 4-Nitrophenol and Phenol on RSTA using GAC (GAC를 이용한 RSTA에서 Phenol과 4-Nitrophenol의 이성분계 경쟁흡착)

  • Lee, Seung-Mok;Kim, Dae-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.723-731
    • /
    • 2000
  • In recent years, the amount and number of synthetic organic compounds(SOCs) discharged from various industries has been increasing. Granular activated carbon(GAC) adsorption is one of the best available technology to remove SOCs from water supplies and wastewater. In this paper competitive adsorption for binary mixture of 4-nitrophenol and phenol on reverse stratified tapered adsorber(RSTA) using GAC was studied. Two isotherm experiments were conducted, one for phenol and the other for 4-nitrophenol. The phenol data of binary mixture isotherm were not fitted to Freundlich isotherm. The competitive adsorption increased significantly with decreasing carbon dose and increasing adsorbate concentration. The RSTA was found to provide an increase in breakthrough time when decreasing flow rate, increasing angle and injection layers. The performance enhancement provided by RSTA can be exploited in separation and in the purification of fluids.

  • PDF

Study on coagulation reaction of paper wastewater for superconducting HGMS (초전도 자기분리에 의한 제지폐수 처리를 위한 응집반응 연구)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Kim, Young-Hun;Ha, Tae-Wook;Oh, Sang-Soo;Song, Kyu-Jeong;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Ho-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.298-298
    • /
    • 2008
  • 제지산업은 다량의 용수를 사용하면서 또한 많은 양의 폐수를 배출하고 있다. 기존의 폐수처리 공정에서는 침전처리를 위한 큰 공간과 오랜 시간이 요구되어 처리비용이 비교적 많이 드는 단점이 있다. 이러한 기존 기술의 문제점을 보완할 수 있는 새로운 고도처리가 가능한 초전도 마그네트를 이용한 자기분리 기술을 적용하고자 하였다. 자기분리의 기본 원리는 강력한 자기력에 의하여 액체에 포함된 자성입자를 분리해내는 것으로 자성입자들이 자계의 힘에 의하여 잡아당겨지고 포획될으로서 제거되는 것이다. 자기분리용 전자석으로서는 아주 이상적으로 이러한 초전도마그네트와 체(sieve) 형 자기필터를 결합시키면 아주 높은 고구배의 자장(HGMS; High Gradient Magnetic Separation)을 발생 시킬 수 있다. 초전도마그네트를 이용하면 대공간에 전력손실 없이 고자장을 발생시킬수 있기 때문에 미립자를 효과적으로 고속으로 분리하는 것이 가능해지며 또한 상자성 미세입자까지도 처리할 수 있다. 본 연구에서는 주로 유기물로 구성된 제지며|수의 부유물을 자성체와의 응집반응에 의해 플록을 형성하여 자성플록의 자기분리 효과를 연구하였다. 응집제의 종류와 응집반응 공정에 따른 자성플록의 형성 정도를 조사하였으며 자기분리 후 폐수의 탁도, COD 등의 특성을 분석하였다.

  • PDF

The development of the discharge reactor for water purification and a spectroscopic study on its discharge emission (수처리용 방전 리액터의 개발과 방전 발광의 분광학적 분석 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Kim, Jong-Seog;Jung, Jang-Gun;Koh, Hee-Seog;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.581-582
    • /
    • 2005
  • In order to apply the discharge plasma processing. to industrial areas, the control of the chemical reaction mechanism is necessary. The hybrid plasma reactor was designed for the effective treatment of wastewater and hazardous volatile organic substances. This plasma reactor was similar to the barrier discharge, and surface discharge on the dielectric surface was propagated to the water surface strongly for the heterogeneous chemical reaction at the interface between the working gas and the water surface. The discharge emission in this discharge reactor was mainly $N_2$ second positive band in the case of $N_2$ or air gas atmosphere, and intensities from OH radicals in Ar gas atmosphere were stronger than in $N_2$ or air gas atmosphere. From this result, it is necessary to apply Ar gas for the effective generation of OH radicals in this plasma reactor.

  • PDF