• Title/Summary/Keyword: Wasted Glass

Search Result 13, Processing Time 0.031 seconds

En Experimental Study on t he Properties of Mortar Containing Recycled Glass (재생유리를 혼입한 모르터의 특성에 관한 실험적 연구)

  • 배수호;정영수;석윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.36-41
    • /
    • 1998
  • Recently, it has been reported that recycling of wasted glasses should be a hot issue in related business field. Thus, the purpose of this experimental research is to recycle wasted glasses by substituting for the cement in mortar and concrete. As a pilot test, workability and the strength of mortar with recycled glass have been tested and analyzed according to replacement ratio of recycled glass with grain size of them. As a result, considering the workability and the strength of mortar containing recycled glass, the existence of the optimum replacement ratio and grain size of them have been obtained.

  • PDF

An experimental study on the preparation and property of the sintering aggregate using fly ash (플라이애쉬를 이용한 소성골재의 제조 및 특성에 관한 연구)

  • 박대영;김도수;박종현;임채영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.239-244
    • /
    • 1998
  • Fusion temperature of fly ash was determined with wasted glass wool and borax using ash fusion determinator, 0.5wt% of bentonite and water glass used as binder, 50wt% of wasted glass wool added to fly ash, fusion temperature of fly ash was 1, 156$^{\circ}C$. Pellet was prepared, and then sintered at 1, 00$0^{\circ}C$ and 1, 10$0^{\circ}C$. Water-absorption rate, specific gravity, porosity and pore structure of sintering aggregate was determined.

  • PDF

Reutilization of waste LCD panel glass as a building material (건축자재로서 폐 LCD 판유리의 재활용)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Seo, Eui-Young;Lee, Won-Sub
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.53-57
    • /
    • 2011
  • Recently due to dramatically increasing demand of liquid crystal display (LCD) panel in IT industry, the used LCD panel glass has been wasted from electronic items, and also panel glass of poor quality during manufacturing process. The wasted LCD panel glass was crushed in the range of 0.42 to 2mm and evaluated for its usefulness as a aggregate in production of cement concrete brick. Cement concrete specimens with various mixing ratios of weathered granite soil, LCD panel glass and cement were cured in wetness for 7 days at $40^{\circ}C$ and then tested for uniaxial comprehensive strength (UCS)(KS F 4004 method). Specimen with a mixing ratio, 1:6:3, of weathered granite, LCD panel glass and cement, respectively, showed the highest average in the UCS test($26.51N/mm^2$). It is much higher than that of commercial brick without glass($17.00N/mm^2$). Conclusively waste LCD panel glass can be reutilized economically as a raw building material of good quality.

  • PDF

Experimental Study on the Mechanical Properties of Glass Concrete with Powdered Waste Glasses (폐유리 분말을 혼입한 유리 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 배수호;정영수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • As a part of the movement of natural resources conservation, there have been doing many recycling research works for obsolete aged tire, wasted plastic materials, etc. The purpose of this experimental study is to develop glass concrete by recycling wasted glasses as a cementitious constituent in concrete. First of all, the optimum replacement ratio of powdered waste glasses(PWG) can be determined through pilot compressive strength test on normal and high strength concrete cylinders, which have been made in various mix proportions by changing the replacement ratio of PWG. Then, further tests have been done to figure out mechanical properties of most desirable glass concrete with optimum replacement ratio of PWG, such as static modulus of elasticity, compressive and tensile strengths, flexural strength. On the other hand, the alkali-silica reactions by the mortar-bar method(KS F 2546) have been experimentally doing in various grain sizes of PWG, since the alkali in the cement has a tendency to react with the silica in the PWG. In can be confirmed from the test that glass concrete can have better workability than concrete with silica fume, and they are alike in compressive strength. It is concluded that wasted glasses can be used as pratical additives for economic and environmentally friendly concrete.

An Experimental Study on the Properties of Mortar with Powdered Waste Glasses (폐유리 미분말을 혼입한 모르타르의 특성에 관한 실험적 연구)

  • Kim, Ho-Soo;Baek, Chul-Woo;Park, Cho-Bum;Jeun, Jun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.805-808
    • /
    • 2006
  • At the present time, as part of the movement of natural resource conservation, there have been doing many recycling research works for wasted concrete, etc. In this study, we carried out an experiment for using crushed waste glass as a binder. It dealt with comparative analysis of the engineering properties of mortar containing crushed waste glass through a physical experiment. The experimental variables are the crushed waste glass powder substitution ratio(C-type : $0{\sim}25%$, B-type : $0{\sim}50%$, F-type : $0{\sim}100%$). According to this study, As the substitute of waste glass powder increases, air content and unit weight, the compressive strength decreases exactly proportion to the substitute ratio of waste glass powder. if, when waste glass is substituted as the binder, it is necessary to use an admixture.

  • PDF

Evaluation of the Physical Properties for Lightweight Bricks Made from Sewage Sludge and Wasted Glass (하수슬러지로 제조한 경량 벽돌의 물성평가)

  • Jeong, Jae-Ah;Son, Yeong-Geum;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.781-784
    • /
    • 2013
  • Ocean dumping of sewage sludge is banned. Therefore, it is needed to develop alternative treatment method. Sewage sludge and waste glass are used to prepare lightweight brick. Large amount of energy is consumed to prepare building material, because of its high preparation temperature, or above $1,200^{\circ}C$. We study to prepare lightweight brick, using sewage sludge and waste glass as raw materials in this research. Lightweight brick was made at low temperature of below $800^{\circ}C$ to reduce $CO_2$ emission by geopolymer technique. Calcination temperature, mixing ratio of sewage sludge/waste glass and water glass/water were discussed to evaluate their effect on the brick prepared. In this study, the optimal conditions for preparing bricks was $750^{\circ}C$ of firing temperature, 1.5 of mixing ratio for water glass/water and 10 : 90 wt% of sewage sludge/waste glass. At this condition, compressive strength and specific gravity of brick prepared were 5.1 MPa and 0.46, respectively. These values satisfy the criteria on a lightweight brick.

A Distributed Hybrid Algorithm for Glass Cutting (유리재단 문제에 대한 분산 합성 알고리즘)

  • Hong, Chuleui
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.343-349
    • /
    • 2018
  • The proposed hybrid algorithm combines the benefits of rapid convergence property of mean filed annealing(MFA) and the effective genetic operations of simulated annealing-like genetic algorithm(SGA). This algorithm is applied to the isotropic material stock cutting problem, especially to glass cutting in distributed computing environments base on MPI called message passing interface. The glass cutting is to place the required rectangular patterns to the given large glass sheets resulting in reducing the wasted scrap area. Our experimental results show that the heuristic method improves the performance over the conventional ones by decreasing the scrap area and maximum execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential one while it achieves almost linear speedup as the problem size increases.

The mobile and modular GFRP-membrane-structure with the new innovative connection system (새로운 GFRP접합 시스템을 이용한 멤브레인 파빌리옹)

  • Knippers, Jan;Park, Don-U;Hub, Alexander;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.7-15
    • /
    • 2005
  • Currently, the structural material, namely glass fiber reinforced polymer (GFRP) is focused on innovative structure due to lightness, excellent workability and noncorrosive characteristics, etc. However, the lack of GFRP connection technology produces only an imitation of steel and wood structures. This uses univentive design principles as well as unsuitable material applications, causes tons of surplus of materials to be wasted, and results in uneconomical structures, because the characteristics between steel and GFRP are completely different. Thus, this research develops the new, innovative GFRP connection system with considerations of the characteristics of GFRP and adopts it to a mobile und modular membrane pavilion.

  • PDF

Study on Recycling of Scraps from Process of Silicon-single-crystal for Semiconductor

  • Lee, Sang-Hoon;Lee, Kwan-Hee;Hiroshi Okamoto
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.705-710
    • /
    • 2001
  • So for the quartz-glassy crucible wastes which was used for pulling up silicon-single-crystal ingot have simply reused for refractory raw-materials, or exhausted. This study is concerned on the advanced recycling-technology that is obtained by the proper micro-particle preparation process in order to fabricate fine amorphous silica filler for EMC (Epoxy Molding Compound). Therefore, this paper will deal with the physical, chemical and thermal pre-treatment process for efficient impurity removal and with the proper micro-particle process for producing the amorphous silicafiller. In view of the results, if the chemical, physical and thermal pre-treatment process for efficient elimination of impurity was passed, the purity of wasted fused glassy crucible is almost equal to the its of first anhydrous quartz glass. Thus, it was understood that this wasted fused glassy crucible was sufficient value of recycling, though it was damaged. When the ingot was fabricated, Phase transformation of crystallization by heat treatment (heat hysteresis phenomenon) was not changed. So, it was understood that as fused silica in the amorphous state, as It is, recycling possibility was very high

  • PDF

Recycling of Sound Insulation Headliner Waste Material (흡음재 폐기물의 재활용 방안)

  • Hong, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3089-3095
    • /
    • 2013
  • The headliner was made of polyurethane(PU) and glass fiber(GF) composite materials are widely used as a sound insulation material. A large amount of waste materials occurs as a by-product in the headliner manufacturing process. In order to efficiently reuse the headliner waste materials, separation process of the components are very necessary. According to the results of thermal analysis, weight loss showed increase in the order polyurethane foam> non-foaming polyurethane> non-woven fabric> 1st layer> glass fiber in the range of up to $400^{\circ}C$. Analysis of the DSC characteristics, HDPE, LLDPE, PP, and Master Batch by adding additives the wasted scrap. As a result, except for the PP, there was no exothermic transition due to the crystallization.