• Title/Summary/Keyword: Waste wood

Search Result 324, Processing Time 0.028 seconds

Conversion of Shoot Waste of Fast-Growing Teak into Activated Carbon and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Raka Dzikri NURULLAH;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.488-503
    • /
    • 2024
  • Shoot waste refers to the parts of trees that are not yet optimally utilized. In this study, we aimed to utilize shoot waste of fast-growing teak (FGT) extracted from the community forest in Wonosari, Gunungkidul, Yogyakarta Special Region, Indonesia by converting it into charcoal, followed by further conversion into activated carbon. This study was conducted with two treatment factors of the activation process, including thermal treatment (750℃, 850℃, and 950℃) and heating period (30, 60, and 90 min), to determine the best condition for the activation process. Our results indicated a significantly effect of the interaction between thermal treatment and heating period on the moisture content, volatile matter content, ash content, fixed carbon content, and adsorption properties of the produced activated carbon. The highest iodine adsorption capacity of activated carbon is 1,102.57 mg/g, which was produced by thermal treatment at 750℃ and heating period of 30 min. This result fulfilled the Indonesian National Standard (SNI 06-3730-1995 quality standard). Furthermore, the quality parameters of the produced activated carbon include: moisture content of 6.13%; volatile matter content of 17.27%; ash content 5.24%; fixed carbon content of 77.49%; benzene removal efficiency of 8.43%; and methylene blue adsorption capacity of 69.66 mg/g. Based on this study, we concluded that shoot waste of FGT could be classified as a prospective material for developing activated carbon for industrial application.

The beating effect of high crystalized nonwood fibers treated with low-molecular weighted waste celulase in the papermaking processes (Cellulase생산공정중 발생되는 저분자량 분포도의 폐효소류 처리가 고결정화된 배목재 섬유소의 고해에 미치는 영향)

  • 김병현;신종순;강영립;박병권;이성구
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.121-139
    • /
    • 2000
  • This study is to test the possibility of applying the low-molecular weighted waste cellulase, which is produced in the process of cellulase production, to paper making. After experimenting on high-crystallized non-wood fibers with beating catalyst. I got the result that the condition for the optimal effect is temperature 40~6$0^{\circ}C$, the time 90min to 120min, pH 5.0 to 6.0, the enzyme contents 0.3% and that the effect of beating such as slight reduction of fiver viscosity, increase of water retention value(WRV) and shortening of fiber length was increased with waste cellulase. Through this process, the density, folding endurance, tensile strength and burst strength of paper was remarkably increased, which is inferred to result from the increased flexibility of fiber by individual characteristics of non-wood fiber, which was high-crystallized by penetrated low-molecular weight cellulases in the fiber.

  • PDF

Comparison of enzymatic hydrolysis characteristics of mushroom culutured waste (MCW) and Cork oak by alkali treatment (알칼리 처리에 따른 폐골목 및 굴참나무의 효소당화 특성 비교)

  • Yoon, Su-Young;Seung, Hyun-A;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.44-49
    • /
    • 2014
  • The mushroom cultured waste(MCW) from cork oak was evaluated as the raw material for bioethanol production. For enzymatic hydrolysis, cellulase cocktails (Celluclast 1.5L and Novozym 188) was used for polysaccharides to monosaccharides conversion. Compared with sound cork oak woodmeal, woodmeal from MCW showed higher cellulose to glucose conversion. To improve polysaccharides to monosaccharides conversion, pretreatment by sodium hydroxide was applied. Even though more xylan and lignin were removed in woodmeal of MCW than that of cork oak, concentration of glucose was higher from sodium hydroxide treated cork oak woodmeal (51.3 g/L) than treated MCW woodmeal (41.6 g/L).

Lignin Characterization of Waste Liquor by Modified Pulping Process (개량(改良)펄프화법(化法)으로 제조(製造)된 폐액(廢液)중의 리그닌의 특성(特性))

  • Hwang, Byung-Ho;Cho, Hern-Joung;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • This study was carried out to investigate the characterization of lignins from waste liquors in SP, KP, ASAM, and AS from Pinus densiflora, Quercus mongolica, and Betula ermanii. Spectroscopic study was applied to examine the lignins separated from different pulping process. Lignin contents in waste liqours increased in order of AS, ASAM, KP, and SP. UV spectra of three types of lignin except AS lignin showed similar pattern. IR spectra of AS lignin showed strong C=O absorptions in the range from 1730 to 1750$cm^{-1}$, where as those of KP, SP, and ASAM showed weak stretch in this region. NMR spectra of AS lignin showed strong characteristic chemical shifts of acetoxyl groups of acetylated aliphatic and aromatic hydroxyl groups at 2.0~2.5 ppm. Molecular weight of ASAM lignin from Pinus densiflora determined and found number average molecular weight 1,199, weight average molecular weight 5,458. z average molecular weight 17,242, and viscosity average molecular weight 5,457. It is considered from the results based on spectroscopic study of lignin that waste liquors (in SP, KP, ASAM and AS) from Pinus densiflora, Quercus mongolica, and Betula ermanii can be used for lignin utilization.

  • PDF

A study on the Recovery of waste fluids of the conservation treatment of waterlogged wooden artifacts (수침목재유물보존처리 폐액의 재활용에 관한 연구)

  • Yang, Seok-Jin;Kim, Jong-Hwa;Song, Ju-Yeong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.108-115
    • /
    • 2012
  • Archaeological waterlogged woods found under the sea, in lakes, or in swamp environments are generally weak and fragile. If waterlogged wood materials were taken out of the water and left without modification, they would collapse and lose their original dimensions completely. Conservation is performed to replace the water with chemical agents and to give dimensional stabilization and durability. EDTA and PEG are the most commonly used in the preservation of wood. pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. The black substance is eliminated from wood as Fe-EDTA complex are formed and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. Waste fluid produced in PEG treatment shows the black color and has an offensive odor by organic matter extracted from wood. Color of waste fluid is decolored with oxidation reaction by peroxy hydrate. In FT-IR and SEM-EDX of PEG after freeze-drying process, no significant change of functional groups induced from oxidation is observed, and any metal ion does not exist in the solid PEG specimen. The molecular weight of PEG is measured using GPC and viscometry. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Consequently, the peroxidation with $H_2O_2$ is a reasonable and simple method to decolor the used PEG solution.

The Production of Xylitol by Enzymatic Hydrolysis of Agricultural Wastes

  • Tran, Lien-Ha;Masanori Yogo;Hiroshi Ojima;Osamu Idota;Keiichi Kawai;Tohru Suzuki;Kazuhiro Takamizawa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.223-228
    • /
    • 2004
  • Agricultural waste products, beech wood and walnut shells, were hydrolyzed at 40$^{\circ}C$ using mixed crude enzymes produced by Penicillium sp. AHT-1 and Rhizomucor pusillus HHT-1. D-xylose, 4.1 g and 15.1 g was produced from the hydrolysis of 100 g of beech wood and walnut shells, respectively. For xylitol production, Candida tropicalis IFO0618 and the waste product hydrolyzed solutions were used. The effects on xylitol production, of adding glucose as a NADPH source, D-xylose and yeast extract, were examined. Finally, a 50% yield of xylitol was obtained by using the beech wood hydrolyzed solution with the addition of 1% yeast extract and 1% glucose at an initial concentration.

Optimization of Organosolv Pretreatment of Waste Wood for Lignin Extraction (폐목재로부터 리그닌 추출을 위한 Organosolv 전처리공정의 최적화)

  • Lee, Hyunsu;Kim, Young Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.568-574
    • /
    • 2017
  • The purpose of this study was to optimize experimental conditions (time ($X_1$) (ranging of 26.36 - 93.64 min), concentration of sulfuric acid ($X_2$) (ranging of 0-2.5%) and temperature ($X_3$) (ranging of $136.4-203.6^{\circ}C$) for an organosolv pretreatment process to extract lignin from waste wood. The resulting quadratic model equation using RSM (response surface methodology) represented y (lignin yield) = $-79.89+0.91X_1+9.8X_2-2.54{\times}10^{-3}X_1{^2}-2.11X_2{^2}$. The $R^2$ (coefficient of determination) value of 0.8531 for a model indicates this model has statistically significant predictors at the 10% levels. The predictive results optimized by quadratic model produced a lignin yield of 12.46 g/100 g of dry wood under conditions of $178.2^{\circ}C$ and 2.32% $H_2SO_4$. The lignin yield was more affected by the acid catalyst concentrations than the reaction temperature, but the reaction time was not an influential factor for improving lignin extraction from waste wood in this organosolv pretreatment. According to ANOVA (analysis of variance), the significance probability (p-value) of model was smaller than 0.001 and simulation of obtained model equations showed a good reproducibility based on actual organosolv tests under optimal conditions.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

A Study of the Salt Rejection from the Surface of Marine Waste using Ultra Fine Bubble (초미세기포를 이용한 해양쓰레기 표면 내 염분제거에 관한 연구)

  • Kim, Bo-Min;Kim, Kwang-Koo;Park, Chan-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.11-18
    • /
    • 2021
  • Nano bubble water is used in various washing processes, including cleaning of solar panels, salt rejection of roads, and cleaning precision parts of machines. High cleaning efficiency and water conservation are obtained by applying nano bubbles during pretreatment of the marine waste cleaning system. This study compared the salt rejection of nano bubble water, and it was revealed that marine waste was produced by wood immersed in 200,000 mg/L NaCl solution. Using tap water and nano bubble water for washing, comparisons of the surface salt concentrations of wood were determined according to the nozzle, orifice diameter, pump speed and washing time. Decreased surface salt concentration was observed on the wood surface with increasing washing time. Water consumption was optimal between 5- and 10-seconds washing time. Increasing orifice diameter of the nozzle reduced the spraying pressure, with consequent increase in the wood surface salt concentration, thereby establishing the importance of orifice diameter of the nozzle. Compared to levels obtained with tap water, salt concentration of the wood surface after washing with nano bubble water was 2.2% lower with sector nozzle, and 30.9% lower with circular nozzle. In the washing experiment using nano bubble water, the salt concentration on the wood surface was about 9.5 mg/L lower when washed with sector nozzle than the circular nozzle.

Manufacture of Dyed Recycling Wood Fiber Using Waste MDF (폐MDF를 이용한 염색재생섬유 제조)

  • Ju, Seong-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • This research was performed to use recycling wood fiber from waste MDF as raw materials for manufacturing of interior decorative accessories. Virgin fiber of Pinus rigida for manufacturing MDF and recycling fiber from manufactured MDF with virgin fiber were dyed by using reactive dyes (Bis-monochlorotriazine and Vinyl sulfone type), vat dyes (Anthraquinone type), direct dyes (Diazo type) such as red, yellow and blue, and natural dyes using gardenia or sappan wood, and they were examined to evaluate their dyeing properties and sunlight fastness. The hue of virgin fiber and recycling fiber were 4.2YR, and 4.4YR, respectively, which showed red-yellowish color. The recycling fiber looked a little darker than the virgin fiber, where $L^*$ values of the recycling fiber showed a little lower. Reactive, vat and direct dyes dyed well both the virgin and recycling fibers. The recycling fiber showed a little higher values of colour yield and a little lower in $L^*$, but it seemed that there was no significant difference. The Hue values of the recycling fiber and the virgin fiber dyed with sappan wood were 4.4YR and 4.0YR, showing no difference between/after dyeing. However the Hue values of the recycling fiber and the virgin fiber dyed with gardenia were 7.4YR and 6.9YR, respectively. Those values were much higher than the values of the fibers dyed with other chemical dyes. But the fibers dyed with gardenia showed poor sunlight fastness.