• Title/Summary/Keyword: Waste treatment facility

Search Result 170, Processing Time 0.022 seconds

Performance Evaluation of a Bioreactor Partially Packed with Porous Media Containing a MA (Microorganism Activator) (미생물 활성물질이 내재된 담체를 이용한 생물반응조의 성능 평가)

  • Park, Jong-Hoon;Hong, Seok-Won;Choi, Yong-Su;Lee, Sang-Hyup;Kim, Seung-Jun;Kang, Seun-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.47-55
    • /
    • 2007
  • The waste water treatment facility at rural and mountainous region in catchment areas of dams should be small scale. The wastewater treatment facility of small scale has some specification as follows;1)simple process, 2)low maintenance cost, and 3)high removal efficiency. So, we developed the bioreactor which can be satisfied with the specification of small scale waste water treatment facility. The bioreactor consisted of the anoxic and oxic zone. The two zones were effectively separated by cone type baffle. By the effective separation through CTB, the nitrification and denitrification reaction occurred effectively. Therefore, the removal efficiency of total nitorgen (TN) increased compared to other types of baffle. And, we put into the bio activated media in oxic zone to increase the concentration and activity of microbiology. The media contained the components which were made of many kinds of the minerals to increase the activity of microbiology. Additionally, we observed that the phosphate removal efficiency increased by bio activated media. This is resulted from the coagulation-sedimentation reaction by mineral in components. The average removal efficiencies of TN and TP during Run 2 were 69 and 89% which were 4 and 25% higher than those during Run 1 without the MA, respectively. For BOD, COD, SS and TKN, the average removal efficiencies at Run 2 were slightly higher than those at Run 1. Therefore, we could maintain the high concentration and high activity of microbiology through bioreactor developed in this study. And the removal efficiency of TN and TP increased.

Comparison of the unit mass discharge from wastewater treatment facility in the industrial park with the estimation methods (산업단지 폐수발생량 원단위 산정 비교연구)

  • Kim, Joon-Yup;Choi, Kyoung-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • The predictive capacity of wastewater treatment facility in the industrial park was estimated by the traditional method and on-the-spot survey such as certification of wastewater report and the invoices of water supply and ground water supply. The ratios of a converted wastewater to supplied industrial water between traditional method and on-the-spot survey in the estimation methods were different. By using traditional method, the business type of clothes, accessary and fur production had 77.18 % of waste ratio of wastewater and $10.72m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest among 9 business types. With the respect to the on-the-spot survey, food manufacturing business type had 75 % of waste ratio of wastewater and $8.35m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest values. The amount of wastewater from on-the-spot survey method was 541 $m^3/day$ less than one from traditional method.

Radiation Dose Assessment of ACP Hotcell for Spent Fuel Treatment in Normal Operation & Accident Case (사용후핵연료 처리를 위한 ACP 핫셀의 정상운영 및 사고시 방사선 환경영향평가)

  • 국동학;정원명;구정회;조일제;이은표;유길성
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • Advanced spent fuel Conditioning Process(ACP) project which is under development for efficient spent fuel management has finished process feasibility study and is preparing $\alpha$-${\gamma}$ type hot cell construction for process experimentation. Radiation dose evaluation for the radioactive nuclides were preliminarily performed for normal operation and accident case with the basic concept design report, the meteorological data and the recent site specific data. According to the production and release rate of nuclides, dose evaluations for residents around facility were performed. The evaluation result shows a safe margin for regulation limits and SAR(Safety Analysis Report) limit of IMEF(Irradiated Material Examination Facility) where this facility will be constructed.

  • PDF

Treatment of residues of excavated carcasses burials (가축매몰지 소멸시 잔존물 처리방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2018
  • Burials for the rapid disposal of carcasses have diverse and profound effects on the rural living condition, natural environment, and local economy throughout construction, management and final destruction of burials. In this study, possible residue excavated from standard burials, storage using FRP (Fiberglass Reinforced Plastic) tanks, and microbial-treated burials are characterized as carcasses, contaminated soil by leachate, and wasted plastic film. Treatment technologies for volume reduction of the residue including composting, rendering, and thermal hydrolysis were investigated. If the solid and liquid residues generated during volume reduction treatment are directly transferred to the environmental facilities, it may cause disorder due to high concentrations of organics, antibiotics, and lipid. Benefits and drawbacks of composting as a volume reduction techniques are extensively investigated. We also discussed that proper treatment of excavated soils and the reusing the treated soil as agricultural purpose. For the protection of public health and worker's hygiene, treatment criteria including produced residue qualities, and quality standards for the treated soil as agricultural use are required. In addition, Scientific manual for the proper treatment of residues is required. It is necessary to consider the establishment of a pretreatment facility to the occurrence of large-scale residue treatment.

Influence of Effluent from a Sludge Carbonization Facility on Wastewater Treatability (슬러지탄화공정수 연계처리가 하수처리효율에 미치는 영향)

  • Han, Joo Eun;Park, Soo-Hyung;Lee, Wontae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2019
  • We investigated influence of connected influent on the treatability of a wastewater treatment plant (WWTP), recently accepting effluent from a sludge carbonization facility. Based upon the pollutant loading rates (kg/d) of each connected influent, food waste leachate and livestock wastewater contributed to high BOD and COD loadings, while sludge carbonization facility effluent certainly contributed to T-N and $NH_3-N$ loadings. The nitrification rate in aerobic tank decreased to 55% with the carbonization facility effluent entering to the WWTP, while it was 89% with no carbonization facility effluent entering. The sludge carbonization facility effluent may need to be pretreated to reduce T-N and $NH_3-N$ loadings before entering to the WWTP for further treatment.

Assesment of the industrial Wood Waste Disposal Cost through Analysis of the Treatment Flow (사업장계 폐목재의 흐름 분석을 통한 처리비용영향 검토)

  • Kim, Jaenam;Kim, Sujin;Phae, Chaegun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • This research has looked into the treatment process of wood waste generated from industrial waste within the region and in order to modify the problem that may occurred during the mass balance were analyzed for development of suitable solid waste recycling network regionally. As as result, quite amount of wood waste are being transferred to another region, even though a treatment facility's capacity could bear the total amount of waste generated within the area. Although the wood waste could be treated locally, it is analyzed that amount of wood waste are being transferred due to inefficient and irrational processing system between regions. It is assumed that $CO_2$ generated and loss of unnecessary fuel cost from these inefficient system is quite a lot and in order to modify this disorganized system, it will not inevitable to treat the waste based on the characteristics of each regions. Also, the wood waste recycling system should be studied with the efficient, environmental friendly processing and delivering network by minimized transfer distance and local systemizing the waste treatment system.

An Evaluation on the Radiation Shielding of the Radwaste Drum Assay Facility (방사성폐기물드럼 핵종재고량 평가시설 구축에 따른 방사선차폐 영향평가)

  • Ji, Young-Yong;Kwak, Kyung-Kil;Hong, Dae-Seok;Shon, Jong-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • In order to dispose of the LILW(low and intermediate level radioactive waste) stored at KAERI, the radwaste drum assay system will be introduced to evaluate the radioisotopes inventory of stored drums. At present, the construction project of the dedicated assay facility to operate it and carry out routine maintenance of that equipment has been conducting at the radwaste treatment facility. Since that facility will be constructed in front of a 1st radwaste storage facility as well as the radwaste drums to be assayed and the transmission source in the radwaste drum assay system are in that facility, they could act as the radioactive sources and then, would affect the dose rate at the inside and the outside of the facility. Therefore, the radiation shielding should be evaluated through the concrete wall near to the radioactive sources whether the wall thickness is sufficient against the regulations. In this study, the radiation safety for the concrete wall around the radiation controlled area in the radwaste drum assay facility was evaluated by the MCNP code. From the evaluation results, the thickness of those concrete walls which are under consideration of about 30 cm was enough to shield the radiation from the radioactive sources.

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

  • Lee, Han-Soo;Park, Geun-Il;Kang, Kweon-Ho;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.317-328
    • /
    • 2011
  • Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.

Current Status of the Spent Filter Waste and Consideration of Its Treatment Method in KAERI (KAERI 저장 폐필터의 현황과 처리방법에 관한 고찰)

  • Ji, Young-Yong;Hong, Dae-Seok;Kang, Il-Sik;Shon, Jong-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.257-265
    • /
    • 2007
  • Spent filter wastes of about 1,000 units (200 L) have been stored in the waste storage facility of the Korea Atomic Energy Research Institute since its operation. At the moment, to secure space in a waste storage facility as well as to efficiently manage spent filter wastes, it is necessary to conduct a compaction treatment of these spent filters, and finally, to repack the compacted spent filters into a 200 liter drum. To do that, the spent filter wastes were first classified according to their generation facilities, their generation date and their surface dose rate by investigating the inventory of the spent filters. In order to repack a compacted spent filter in a 200 liter drum, it is first necessary to conduct a radionuclide assessment of a spent filter before compacting it. Therefore, after taking a representative sample from a spent filter without a dismantlement, the nuclide analysis for it will be conducted. And then, after putting a spent filter into a regular drum by conducting the columnar shaping of the hexahedral form of a spent filter, the compaction treatment of the shaped spent filter will be conducted by vertically compacting it.

  • PDF

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF