• Title/Summary/Keyword: Waste resource

Search Result 705, Processing Time 0.038 seconds

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

A Study on the RSVP_Proxy for Micro Mobility (마이크로 이동성 위한 RSVP_Proxy에 관한 연구)

  • 박승균;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.774-782
    • /
    • 2003
  • Generally, in the Mobile IP technologies, the use of RSVP(Resource ReSerVation Protocol) is recommended in order to provide a mobile node real-time service. However, the handoff of a mobile node increases the registration delay, RSVP reservation delay and signalling overhead in the Mobile IP and RSVP interworking. Specially, the resource reservation on the path between a mobile node and a correspondent node is the duplicated reservation and then causes unnecessary creation of the signalling overhead and waste of the resource, since the majority of the path before handoff and after handoff is same. If the radius of a cell providing a wireless interface to a mobile node is small, the number of handoff will increase and also signalling overhead and duplicated resource reservation will increase. In this paper, we proposed the integration model of Cellular IP and RSVP with RSVP proxy scheme. Here, Cellular IP protocol minimizes registration delay, transfer delay, and loss by handoff in micro cell network, the RS VP proxy that minimizes the duplication of resource reservation prevents the path for RSVP session from change using the address for reservation of a mobile node. Proposed scheme was evaluated in comparison with the existing Mobile IP and RSVP interworking scheme using the probability of resource reservation fail to the radius of a cell and the handoff rate.

Current Status for Generation, Treatment and Recycling of Waste Resources in the Domestic Industry and Improvement Measures of Resource Efficiency (국내(國內) 산업(産業) 폐자원(廢資源)의 발생(發生)·처리(處理)·재자원화(再資源化) 현황(現況) 및 자원효율성(資源效率性) 향상(向上) 방안(方案))

  • Kang, Hong-Yoon;Lee, Il-Seuk;Kim, Kyung-Hwan
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.3-17
    • /
    • 2013
  • Recently, the importance of efficient resource management has been highlighted due to the uncertainty of its security. Korea has thus made an effort to improve the resource productivity in various fields such as the increase of recycling rate and the establishment of methodical resource management system. It is still necessary to draw the innovative improvement measure of national resource efficiency. This study derives major issues of recycling potential in the domestic industry by analyzing the current status of generation, treatment and recycling of industrial wastes in Korea. Futhermore, main tasks for promoting the improvement of national resource efficiency through the recycling of industrial wastes in Korea have been proposed based on the results of this study with the comparison of Japan's situation.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

A Study on the Preparation of SiC Nano powder from the Si Waste of Solar Cell Industry (태양전지 산업(産業)에서 배출(排出)되는 Si waste로부터 SiC 분말 제조에 관한 연구(硏究))

  • Jang, Eun-Jin;Kim, Young-Hee;Lee, Yoon-Joo;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.44-49
    • /
    • 2010
  • SiC powders have been recovered from silicon-containing waste slurry by carbothermal reduction method with carbon black. Large amount of silicon-containing waste slurry is generated from Solar Cell industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the silicon waste is important. In this study, SiC powder recovered by the reaction ball-milled silicon powder from waste and carbon black at $1350^{\circ}C$ for 3h under vacuum condition. Physical properties of samples have been characterized using SEM, XRD, Particle size analyzer and FT-IR spectroscopy.

Analysis of R&D investment of waste reduce, recycle and energy recovery technology (폐기물 저감·재활용·에너지화 기술의 R&D 투자 현황 분석)

  • Hong, Jung Suk;Kim, Hyung-Gun
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • Waste reduce, recycle, energy recovery technology is one of 27 key green technology by 2012, the government should increase R&D investment, despite the period 2008 to 2010 average annual growth rate was decreased. Accordingly, this area of government investment in R&D status analyzed in detail and as a result, total government investment in R&D decreased, but in these fields to define strategic product services investment in technology is increasing centralization trend that appears to be investment in the quality of determined that the good is. In particular, in 2010, strategic product service of the technologies 3 technology groups ((1) waste energy equipment (2) waste resource recycling facilities (3) waste based materials production facilities) the proportion of 24-28% relatively evenly invested, government R&D is judged that adequate investment in quality.

A study on the Effect of Agricultural Industry Supporter for Durability using Waste Shell such as Crassostrea gigas (패각을 이용한 농업용 지속성 담지체의 효과에 대한 연구)

  • Oh, Eun-Ha;Kong, Seung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • Much oyster shell is breeding by character and conduct of oyster-industry for a long time among them. An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive pot tests were performed to evaluate characteristics of soils treated by developed waste oyster shells with different water content of soils. Based on test results, eco-friendly Supporter manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements. We got the conclusion by a series of experiment, It is verified that change of pH of soil is improved by mixing with oyster shells. The homogenization method for deducing apparent of oyster shells, which can consider micro-structure of mixed soil, is introduced. The improvement treatment leaded to enlarge fluctuation of soil moisture content. The effect of calcium concentration was good though improvement treatment of physical property. In addition, the crop yield in amelioration plots increased. It means that the increase of crop yield was caused by improvement of soil physical properties rather than improvement of calcium concentration.

POLLUTION PREVENTION : ENGINEERING DESIGN AT MACRO-, MESO-, AND MICROSCALES

  • Allen, David T.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • Billions of tons of industrial waste are generated annually in industrialized countries. Managing and legally disposing of these wastes costs tens to hundreds of billions of dollars each year, and these costs have been increasing rapidly. The escalation is likely to continue as emission standards become even more stringent around the world. In the face of these rapidly rising costs and rapidly increasing performance standards, traditional end-of-pipe approaches to waste management have become less attractive. The most economical waste management alternatives in many cases have become recycling of the waste or the redesign of chemical processes and products so that wastes are prevented or put to productive use. These strategies of recycling or reducing waste at the source have collectively come to be known as pollution prevention. The engineering challenges associated with pollution prevention are substantial. This presentation will categorize the challenges in three levels. At the most macroscopic level, the flow of materials in our industrial economy, from natural resource extraction to consumer product disposal, can be redesigned. Currently, most of our raw materials are virgin natural resources that are used once, then discarded. Studies in what has come to be called industrial ecology examine the material efficiency of large-scale industrial systems and attempt to improve that efficiency. A second level of engineering challenges is found at the scale of individual industrial facilities, where chemical processes and products can be redesigned so that waste is reduced. Finally, on a molecular level, chemical synthesis pathways, combustion reaction pathways, and other material fabrication procedures can be redesigned to reduce emissions of pollution and unwanted by-products. All of these design activities, shown in Figure 1, have the potential to prevent pollution. All involve the tools of engineering, and in particular, chemical engineering.

  • PDF

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Investigation of the Adsorption Properties of Activated Carbon Made by Chemical Activation of Mixed Waste Plastic Pyrolysis Residues (혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 제조한 활성탄의 흡착 특성 조사)

  • Eun-Jin Moon;Yunsuk Kang;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.391-399
    • /
    • 2023
  • Recently, low-temperature pyrolysis technology has been studied as a recycling method for waste plastic. Low-temperature pyrolysis technology for waste plastic produces pyrolysis oil that can be used as an energy resource, but solid residue remains. Waste plastic pyrolysis residues are mostly landfilled due to their limited use. In this study, it is investigated that mixed waste plastic pyrolysis residues could be recycled into activated carbon. It was confirmed that the fixed carbon content of the residue was 33.69 % from proximate Analysis. Chemical activation was used to manufacture activated carbon. KOH was used as an activator. To investigate the effect of the mixing ratio of KOH and residue, samples were mixed at ratios of 0.5, 1.0, and 2.0. The mixed sample was chemically activated at an activation temperature of 800 ℃ for 1 hour. As a result of analyzing the characteristics of activated carbon through BET, it was confirmed that the specific surface area increased as the mixing ratio of KOH increased.