• Title/Summary/Keyword: Waste recovery

Search Result 850, Processing Time 0.028 seconds

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Recovery of Precious Metals from Waste PCB and Auto Catalyst Using Arc Furnace (귀금속 함유 폐기물로부터 아크로를 이용한 유가금속 회수)

  • Ban Bong-Chan;Kim Chang-Min;Kim Young-Im;Kim Dong-Sn
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.3-11
    • /
    • 2002
  • Recently, waste printed circuit board (PCB) has significantly increased in its amount due to the rapid development of electronic industries. Since several kinds of noxious materials and also valuable metals are contained in it, the waste PCB is in an urgent need of recycling for the dual purposes for the prevention of environmental pollution and recovery of valuable resources. Also, the catalyst which equipped in the exhaust pipes of automobiles to reduce emission of air pollutants contains precious met-als so that their recovery from the waste auto-catalysts is required. In this study, the recovery of valuable metals from waste PCB and auto-catalyst by arc furnace melting process has been investigated, which is known to be very stable and suitable f3r less production of pollutants due to its high operating temperature. The effect of the kind of flux on the recovery of precious metals was examined by using quicklime, converter slag, and copper slag as the flux. In addition, the influence of direct and alternating current and the applying direction of direct current has been investigated. It was observed that using converter or copper slag as a flux was more desirable for a higher efficiency in the precious metal recovery compared with quicklime. For the effect of current, application of direct current taking the bottom as a negative pole generally showed a better efficiency for the extraction of valuable metals from waste PCB, which was also observed for the case of waste auto-catalyst. The average recovery of precious metals from both wastes by arc furnace melting process was very high, which was up to in the range of 95~97%.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Recovery of Waste Back Board and Gold from the Process of Printed Circuit Board (인쇄회로기판(印刷回路基板) 제조공정(製造工程)의 폐(廢) Back Board 및 금(金) 회수(回收))

  • Kim, Yu-Sang
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Recently, we have investigated the recovery of resources from the waste material of manufacturing printed circuit board. As printed circuit board or chip has become light, small, high reliability, it is necessary to reuse and recover resources from them. Especially, the printed circuit board that has been used for important mobile electronic pans are plated with min.0.03 ${\mu}m$ to max.50 ${\mu}m$. As increasing the cost of gold, raw material, chemicals, payments and waste material, it has been accelerated the competition for reuse and recovery. But, it is insufficiency of technician and equipments for the recovery of effective resource. In this paper, as analyzing the technical trend of gold recovery and waste back board from the manufacturing process of printed circuit board, it may be effective of recycling, further more it may be contributed to develop the valuable resources.

Recovery of Alumina from the First Calcined Waste Pottery (1차소성 폐도자기로부터 알루미나 회수)

  • 김재용;서완주;이진수;박수길;엄명헌
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • This study was investigated to the recovery of alumina from the first calcined waste pottery using alkaline sintering. This study was based on calcination result of a commercial ${\alpha}-Al2_O_3$ with NaOH powder. $NaAlO_2$ was formed by calcination of ${\alpha}-Al_2O_3$ with NaOH and conversion of $NaAlO_2$ from ${\alpha}-Al_2O_3$ was 91.4% at calcination condition ; weight ritio of $NaOH/{\alpha}-Al2_O_3$ 1.5, $800^{\circ}C$, and 90min. The first calcined waste porrery from the manufacturing Procedure of H Ltd. was grinded to 170/270mesh by a ball mill and calcined over $500^{\circ}C$ with NaOH powder. The calcined sample was dissolved in $25^{\circ}C$ water and sodiumaluminosilicate solid was formed. After filtration, the contained aluminum was leached out by dissolving sodiumaluminosilicate solid in 1N HCl. We estimated the efficiency of Al extraction from waste pottery by ICP analysis and NaOH was added to the filtrate and then aluminum compound was precipitated with $Al(OH)_3$ and recovered. The investigation was carried out with the variables ; the calcination temperature($500-900^{\circ}C$), the calcination time(30~90min), and the weight ratio of NaOH/waste pottery(0.5~1.5). The treatment efficiency of the waste pottery and the recovery of Al as 97.9%, 91.9% were obtained under the optimum conditions as followed ; the weight ratio of NaOH/waste pottery was 1.5 and the calcination conditions were $900^{\circ}C$ and 60min.

  • PDF

Drying Characteristics of Red Pepper using Exhaust Heat Recovery System (배풍열 회수장치를 이용한 고추의 건조특성에 관한 연구)

  • Paek, Y;Cho, K-H;Chung, H-K
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.103-108
    • /
    • 2003
  • This study was performed to find out drying characteristics and develop waste heat recovery dryer. this system was initiated in order to recover discharged waste heat of drying air from drying chamber in agricultural products dryer and recycle for additional heat source that could save drying cost. The system consists of drying chamber, fan, burner, circulation pump and heat exchanger made of fins and tubes. For the system performance, drying experiments with fresh pepper were conducted, and comparisons on fuel consumption amount and drying performance were made between conventional dryer and the heat recovery system attached dryer.

  • PDF

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald;Lee, Moonyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.255-265
    • /
    • 2018
  • The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

Integrated Solid Waste Management for the Environmentally Sound and Sustainable Development (환경적으로 지속가능한 개발을 위한 폐기물의 통합적 관리 방안)

  • Hong, Sang-Pyo;Nam, Kie-Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The costs of solid waste management have continued to increase. Stricter environmental regulations have been applied to waste management units. Future integrated solid waste management should be balanced between source reduction, recycling, energy recovery, and land disposal. To achieve more balanced solid waste management programs, more local governments must adopt diversion and recycling goals and finance to meet those goals. The hierarchy of integrated solid waste management must be enforced in a manner that is flexible enough to allow local governments to implement waste management facilities that match the communities' ability to pay for them. In establishing a hierarchy of integrated solid waste management, local governements have difficulties in implementing source reduction and recycling because of a lack of local control and inability to pay for new facilities. Integrated solid waste management involves selecting compatible options for facilities to manage the collection, recovery of energy and materials(transformation), and disposal of solid wastes efficiently. Waste Collection, transformation, and disposal must support source reduction and recycling activities.

  • PDF