• 제목/요약/키워드: Waste recovery

검색결과 856건 처리시간 0.028초

The review of municipal solid waste management in Nigeria: the current trends

  • Iorhemen, Oliver T.;Alfa, Meshach I.;Onoja, Sam B.
    • Advances in environmental research
    • /
    • 제5권4호
    • /
    • pp.237-249
    • /
    • 2016
  • The management of municipal solid waste (MSW) is essential for every community; and, it is currently a major challenge in Nigeria. This paper provides an overview of the current MSW management trends in Nigeria and proposes new sustainable MSW management systems. Across Nigerian cities, MSW management is characterized by inefficient collection and transportation to disposal sites. Collection services do not reach some unplanned areas and slums due to poor street network. Even some planned areas are not reached by collection services. The informal sector contributes to waste collection, resource recovery and recycling; however, their activities are not recognized by the governments. Markets exist for recovered materials but more efforts need to be geared towards intensive recovery of materials and expansion of these markets. Despite the high proportion of putrescible matter in MSW, the only form of treatment commonly used currently is open burning for volume reduction. The high organic fraction presents a great opportunity for composting and anaerobic digestion. Ultimate disposal is currently done in open dumpsites. This needs to be upgraded to engineered landfills that are properly sited and adequately operated by well trained personnel. There is an emerging waste stream of concern, electronic-waste (e-waste), that requires urgent sustainable management as e-waste are currently co-disposed with other waste streams or burnt in the open posing detrimental health impacts.

Discussion of Current Resource Recycling Policy in Taiwan

  • Chen, Shiao-Shing;Chang, Tien-Chin;Huang, Cheng-Yi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.675-679
    • /
    • 2001
  • The research is to discuss the current resource recycling and recovery policy, which was enacted by Environmental Protection Administrative (EPA) in Taiwan. For the past few years, the solid waste generated in Taiwan has greatly increased about 5 % per year. In addition to the construction of landfill sites and incineration plants, 4 R techniques (Reduction, Reuse, Recycle and Recovery) were also publicized among the citizens and then promulgated to furthermore manage these increased solid waste. Although the regulations have been carried out to a great success, they still need to be revised and updated since solid waste contains varieties of different materials. Therefore, this research discusses the current regulation and makes suggestion for future regulation revision. From the results of this study, energy recovery was suggested to be emphasized in the regulation. Energy could be recovered from materials such as waste tires, and all kinds of plastic containers. Waste tires and most of the plastic containers made of hydrocarbon species, which contains great heating values, should be considered as one of the alternatives for the resource recycling.

  • PDF

250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구 (Thermal and Flow Analysis of Organic Rankine Cycle System Pipe Line for 250 kW Grade Waste Gas Heat Recovery)

  • 김경수;방세경;서인호;이상윤;이중섭
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.26-33
    • /
    • 2019
  • This study is a thermal and flow analysis of Organic Rankine Cycle (ORC) pipe line for 250 kW grade waste gas heat recovery. We attempted to obtain the boundary condition data through the process design of the ORC, which can produce an electric power of 250 kW through the recovery of waste heat. Then, we conducted a simulation by using STAR-CCM+ to verify the model for the pipe line stream of the 250 kW class waste heat recovery system. Based on the results of the thermal and flow analyses of each pipe line applied to the ORC system, we gained the following conclusion. The pressure was relatively increased at the pipe outside the refracted part due to the pipe shape. Moreover, the heat transfer amount of the refrigerant gas line is relatively higher than that of the liquid line.

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구 (A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management)

  • 윤현명;장윤;장용철
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

파일럿 지료 조성설비를 이용한 폐 일회용 기저귀의 유용성분 회수에 관한 연구 (Studies on the Recovery of Useful Materials from Disposable Diaper Waste using Pilot Stock Preparation Units)

  • 이태주;남윤석;박정은;조준형;류정용;이호선
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.66-75
    • /
    • 2015
  • Disposable diaper waste is consisted of plastic, fiber, and SAP (Super Absorbent Polymer). They are valuable to be used as raw materials of other products including plastic blocks and pulp mold. Nevertheless, disposable diaper waste have been disposed by landfill and incineration without recycling. Due to strict environmental regulations it is necessary to develop fractionation technique to recycle the disposable diaper waste. In this study the fractionation technique using pilot-scale stock preparation units was investigated. Process for separation of plastic and fibers from disposable diaper waste was composed by the combination of pilot-scale pulper, drum screen, screen and cleaner. Recovery rate of plastics and fiber was checked according to the various operating conditions. In drum screen, recovery rate of plastic was high when the cut size of disposable diaper waste was $5cm{\times}5cm$. The highest recovery rate of fiber was achieved with 0.3 mm slot screen. It is important to control the neutral state of SAP for improvement of recovery rate of fiber since SAP can be swelled easily in water. Therefore SAP can be controlled efficiently by the addition of calcium chloride into the pulper. Consequently recovery rates of plastics and fibers were over 90 and 80% under the optimum pilot operating conditions.

Synthesis of Needle-Like Aragonite Crystals in the Presence of Magnesium Chloride and Their Application in Papermaking

  • Hu, Zeshan;Shao, Minghao;Li, Huayang;Cai, Qiang;Zhong, Chenghua;Xianming, Zhang;Deng, Yulin
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.315-326
    • /
    • 2009
  • PCC (precipitated calcium carbonate) and ground calcium carbonate have been widely used in alkaline papermaking. Unfortunately, although increasing filler level in papers can improve the paper properties such as brightness, opacity, stiffness gloss, smoothness, porosity, and printability, as well as decrease cost, some strength of the paper is negatively affected. In this research, needle-like aragonite was synthesized using $Ca(OH)_2$ and $CO_2$ as reactants in the presence of $MgCl_2$ and characterized with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The physical and optical properties of the paper handsheets containing these needle-like aragonite fillers were evaluated. Results indicated that tensile strength, Z-direction tensile strength and folding endurance of the paper were improved by the needle-like aragonite crystals compared to the paper using commercial PCC (precipitated calcium carbonate) as filler. The stiffness of the paper handsheet on the machine direction was increased, but no evident difference in the cross direction was found. The improvement of paper strength mainly resulted from the twining effect between the aragonite whiskers and paper fibers. The optical properties of the paper were slightly decreased with the use of the needle-like aragonites compared to commercial PCC. These results suggest that paper cost can be decreased by increasing the content of needle-like aragonite filler while paper strength will not be decreased compared to PCC filler.

시멘트 산업 폐열 회수 현황 (Current Status of Waste Heat Recovery System in Cement Industry)

  • 김영진;서준형;김양수;권석제;조계홍;조진상
    • 자원리싸이클링
    • /
    • 제31권6호
    • /
    • pp.3-17
    • /
    • 2022
  • 이산화탄소 배출량 및 에너지 사용이 많은 시멘트 산업은 탄소중립 실현 및 지속적인 발전을 위한 전략이 필요하다. 에너지 효율 향상을 위해 국내 대부분의 시멘트 업체에서 폐열 회수 시스템을 구축하여 전력을 생산하고 있으나, 이와 관련된 에너지 재활용 연구는 거의 없는 실정이다. 시멘트 생산이 많은 국가에서는 기존의 폐열 회수 시스템을 보완하기 위해 온도에 따라 적용하는 랭킨사이클 변경, 작동유체 비교, 2단 이상의 랭킨 사이클 적용 및 타 산업과의 연계 등을 통해 폐열 회수를 극대화하기 위한 연구를 수행하는 것으로 확인되었다. 본 연구에서는 국내외 시멘트 산업에서의 폐열 회수 및 활용에 대해 정리하여 에너지 효율 향상을 위해 필요한 연구 방향을 도출하고자 하였다.

폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구 (Study on Heat Recovery System using Waste Biomass)

  • 이충구;이세균;이계복;이석호;김정현
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.514-521
    • /
    • 2004
  • Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. Brushwood biomass was used for the present experimental study. Two biomass heat recovery systems were designed and developed. Polyethylene helical pipe line of 0.03 m (inner diameter) was installed to recover the heat of biomass dump. The fermentation process of biomass dump was maintained for 12 weeks. The inner average temperature of biomass was about 51$^{\circ}C$ for both hot exchanger systems. The current heat recovery system could recover up to 6 ㎉/kg of energy.

자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구 (An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.