• Title/Summary/Keyword: Waste organic matter

Search Result 266, Processing Time 0.032 seconds

The effect of continuous application of the food waste composts on the paddy field environment (음식물류폐기물 활용 퇴비의 장기시용이 논 농업환경에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Lee, Jeong-Taek;Seong, Ki-Seog;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.55-70
    • /
    • 2009
  • The long-term effects and the soil environmental changes were examined to ensure the safety of food waste compost in agricultural use. Based on conventional nitrogen application rate of chemical fertilizer, Pig manure compost with $24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1}$ and food waste compost with $20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$ were applied to the paddy soil in $2{\times}2{\times}2m$ lysimeter in which paddy rice (Oryza sativa L. var Chucheong) were grown. The rice grown where food waste compost applied showed better growth responses than control, whereas less yield rate than chemical fertilizer applied. The contents of organic matter, nitrogen, and phosphorus after experiment were increased with compost applied. In addition, it improved soil aeration by the application of food waste compost, while little difference was observed in the quality of surface, infiltrated, and ground water compared to chemical fertilizer applied or control.

Study on Reutilization with Aerobic Microbes of Organic Food Waste Leachates (호기성 미생물을 이용한 음폐수의 처리 및 자원화에 관한 연구)

  • Kang, Bo-Mi;Hwang, Hyeon-Uk;Kim, Ji-Hoon;Yang, Yong-Woon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • This test established the bioavailability and sample input by mixing the maintaining the microbial machine parts and food waste leachates in weight of 2:1 as advanced experiment, maintaining the constant temperature, agitating and observing its weight and property change for 60 hours. And, I injected daily the established microbial machine parts and food waste leachates rate, maintained the temperature in the reactor with $55{\sim}65^{\circ}C$, and agitated with constant speed. I studied the recycling possibility of food waste leachates by extracting the sample after 24 hours, verifying its characteristics, and repeating the food waste leachates input and sample extraction for about 40 days. Considering all about the results of this study, I saw that 87.32% of food waste leachates was reduced, and the solid of bluebug or food included in the food waste leachates was decomposed within 24 hrs. pH for 43 days after 9 days of stabilization period was maintained from 3.7~3.9 and the ignition loss from 88.67~87.3%, and the quantity of organic matter from 77.6~80.88%. With the similar result daily maintained, it is considered to progress more the minimization by inputting the future food waste leachates. C/N rate satisfies the less than 25 that is the composting basis within 8 days, maintaining between 13~15, with 2% of salt not exceeded, it is able to recycle as the compost of food waste leachates as based on the composting with no extracted heavy metal content.

EFFECT OF FEED RESOURCE FROM FOOD WASTE ON GROWTH AND FEED CONVERSION OF RAT (남은 음식물을 이용한 사료자원이 흰쥐의 성장과 사료효율에 미치는 효과)

  • Chung, K.H.;Jang, K.H.;Park, Y.J.;Hong, Y.S.;Shin, H.T.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 1999
  • This study was conducted to evaluate the feasibility of food waste as a feed resources by fermentation and fermented food waste as a substitute of rat feed on the performance with measuring the liveweight gain, feed consumption, feed conversion and digestibility Sixty-two grams Sprague-Dawley line 36 rats were allocated three treatments 12 rats of each(3replication ${\times}$ 4 rats). The substitution level of fermented food waste to commercial broiler feed were control, 0: 100: treatment I, 10: 90: treatment II, 20:80. The chemical composition of fermented food waste was appeared to follows : dry matter, 88.47% : crude ash. 12.95: crude protein, 20.82%; crude fiber, 13.62; ether extract, 9.15%. The body weight of treatment I and II at 1 weeks was significantly lower than those of control(p<.05) and weekly weight gain of control at 0-1 weeks was significantly higher than those of treatment I and II(p<.05). Those were higher in treatment I than those of rest groups at 1-2 weeks(p<.05). Total weight gain of treatment II was significantly lower than those of control and treatment I(p<.05) Total feed consumption of treatment II was significantly higher than those of control (p<.05) and weekly feed consumption of control and treatment II at 3-4 weeks was significantly higher than those of treatment II(p<.05). but those were higher in treatment I and II than those of control at 2-3 weeks(p<.05). Commutative feed conversion of treatment II was significantly higher than those of control(p<.05) and weekly feed conversion of treatment II and III at 0-1 weeks was significantly higher than those of control(p<.05) Dry matter digestibility of control and treatment I was significantly higher than those of treatment II(p<.05) and organic matter digestibility was higher in control than those of treatment II(p<.05).

  • PDF

A Case Study on the Estimation of the Resource Recovery Potentials by Landfill Mining (매립지 정비에 의한 순환이용 가능량 산정 사례 연구)

  • Yi, Sora;Lee, Woo Jin;Rhee, YoungJoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2018
  • As many local governments have faced increasing conflicts on landfill use and the time of end use, it is difficult to provide an alternative landfill or conclude a consensus of lifespan extension for the existing landfill site. Therefore, the purpose of this study is to contribute improving of the landfill capacity by calculating the resource recovery potentials of landfilled waste previously and in the future by landfill mining. For this, rate of volume increase, weight ratio, and apparent density were adopted as major parameters and their values were calculated through previous cases. The rate of volume increase was calculated to 1.42 by averaging previous cases of three areas. The average weight ratio of soil matter was 45.6% by calculating for the three areas. For the combustible waste and incombustible waste, statistical data can be used. The apparent densities were divided by combustible waste, incombustible waste, and soil matter using an average of two areas value, i.e., $0.35ton/m^3$, $1.40ton/m^3$ and $1.58ton/m^3$. We analyzed the resource recovery potential of Cheongju landfill by using the estimated parameters. The additional landfill capacity was 45% of the existing landfill capacity by recovering landfilled waste by landfill mining. In addition, it is analyzed that the lifespan is extended to 20 years, if the combustible waste of new inputting waste is sorted and combusted for energy recovery and incineration ash, incombustible waste, and soil matter are only reclaimed into the existing Cheongju landfill. It is expected that the methodology and parameters of this study will be used as basic data when resource recovery potential is analyzed for another case study of landfill mining.

Utilization of Diets Containing Increasing Levels of Dried Desiccated Coconut Waste Meal (DCWM) by Growing Crossbred Anglo-Nubian Goats in Samoa

  • Aregheore, Eroarome M.;Tunabuna, Tomasi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.316-320
    • /
    • 2001
  • Sixteen growing crossbred Anglo-Nubian goats, 10-12 months old, pre-experimental average body weights of $18.3{\pm}0.28kg$ were randomly allotted to four diets to investigate the efficiency of utilisation of diets containing increasing levels of desiccated coconut waste meal (DCWM) in the tropical environment of Samoa, South Pacific region. The four diets were designated as 1, 2, 3 and 4. Diet 1 that has no DCWM served as the control, while diets 2, 3 and contained different levels of DCWM. Voluntary concentrate intake, growth rate, feed efficiency and nutrient digestibility coefficients were measured. Gross energy (GE) and organic matter (OM) values of the diets increased linearly with increase in the levels of DCWM in the diets. Voluntary concentrate intake decreased with increasing proportion of DCWM in the diets. Forage intake increased with increase in the levels of DCWM diets offered to the growing goats. Total voluntary feed intakes were statistical significant (p<0.05) and the goats on diet 4 had the least intake followed by those on diet 3. Goats an diets 1 and 2 were different in total feed intake but not at a significant level (p>0.05). Feed efficiency (FE) followed the trend of voluntary concentrate intake and daily live weight gains. Dry matter digestibility (DMD) was significantly different (p<0.05) among the goats offered the different diets. DMD improved with increasing levels of DCWM. The goats accepted all, the diets that were compounded with the different levels of dried DCWM and this seems to suggest that DCWM have no deleterious effects. However, the best level at which dried DCWM could replace brewers dried grains in the diets of growing goats is at 38.5% (diet II). Based on voluntary feed intake, live-weight gain and apparent nutrient digestibility coefficients of the goats it could be concluded that DCWM based diets merits further attention as a locally available feed source in ruminants nutrition in the Pacific Island countries where feed availability is seasonal.

Effects of Soil-Amended Bottom Ash on Decomposition Rates of Organic Matter as Investigated by an Enforced-Aeration Respirometer (호기순환 호흡계를 이용한 토양처리 석탄바닥재의 유기물 분해에 미치는 영향)

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.253-259
    • /
    • 2012
  • Disposal of high amount of coal combustion by-products, such as fly ash and bottom ash, is of a great concern to the country, due to the huge treatment cost and land requirement. On the other hand, those coal-ash wastes are considered to have desirable characteristics that may improve physical, chemical, and biological properties of soils. Especially, compared with fly ash, bottom ash has a larger particle size, porous surface area, and usable amount of micronutrients. In the present study, we examined bottom as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in soils fertilized with organic matter (hairy vetch, green barely, and oil cake fertilizer). Through laboratory incubation, $CO_2$ released from the soil was quantitatively and periodically monitored with an enforced-aeration and high-temperature respirometer. We observed that amendment of bottom ash led to a marked reduction in $CO_2$ emission rate and cumulative amount of $CO_2$ released, which was generally proportional to the amount of bottom ash applied. We also found that the temporal patterns of $CO_2$ emission and C sequestration effects were partially dependent on the relative of proportion labile carbon and C/N ratio of the organic matter. Our results strongly suggest that amendment of bottom ash has potential benefits for fixing labile carbon as more stable soil organic matter, unless the bottom ash contains toxic levels of heavy metals or other contaminants.

Optimum Dumping Rate of Biodegradable Liquid Waste in Ocean Disposal (분해성 액상폐기물의 해양처리시 최적 투기율)

  • LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.198-207
    • /
    • 1990
  • Among the biodegradable liquid waste treatment and disposal methods, ocean dumping is a cost-effective and productive manner considering reuse point of view However, when biodegradable liquid waste is dumped in the ocean, oxygen consumption by the decomposition of organic matter must be considered. The purpose of this study is to determine the maximum allowable concentration and dumping rate in the southern waters of the East Sea based on dissolved oxygen level. Streeter and Phelps' model has been used to determine the maximum allowable concentration. Factors in this model, deoxygenation constants and reaeration coefficients, have been determined by appling oxygen consumption method and closed system model. Deoxygenation constants and reaeration coefficients from surface to each standard depth are $0.24\~0.29/day\;and\;0.03\~0.39/day$ in summer, $0.17\~0.20/day\;and\;0.04\~0.56/day$ in winter, respectively. The allowable organic matter concentration($mgBOD/\iota$) to the dissolved oxy-gen sag value of $5mg/{\iota}$ is represented $17.23\times(H)^{-0.37}$ in summer, and $64.96\times(H)^{-0.52}$ in winter by mixing depth(H, m). Csanady's experiment has been applied to estimate the optimum dumping rate. The optimum dumping rate($R,\;m^3/sec$) can be written as a product of the beam(b, m) and the draft(h, m) of vessel, and biochemical oxygen demand of waste($L_n,\;mg/{\iota}$) $R=275{\times}bh^{0.63}L_n^{-1}$ in summer $=745{\times}bh^{0.48}L_n^{-1}$ in winter. The difference of dumping rate between in summer and winter is due to the oxygen distribution.

  • PDF

Longevity Issues in Swelling Clay as a Buffer Material for a HLW Repository (고준위폐기물처분장 완충재물질로서 팽윤성 점토의 장기건전성과 주요 고려사항)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • A swelling clay should remain physically and chemically stable for a long time to perform its functions as a buffer material of a high-level waste (HLW) repository. The longevity issues in the swelling clay were reviewed to evaluate their importance in the performance of a repository. The review results suggest that an elevated temperature due to decay heat, groundwater chemistry, high pH environment by concrete, organic matter and microbes, radiation, and mechanical disturbance might significantly affect the long-term performance of a swelling clay as a buffer material. This paper will be used as basic informations to design the swelling clay buffer for a HLW repository.

  • PDF

Recycling Energy from Mixture of Sewage Sludge and Petroleum Coke Waste

  • Lee, Ki-Hwan;Lee, Tae-Ho;Kim, Jong-In;Park, Byung-Bin;Choi, Suk-Nam;Han, Ki-Suk
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.73-77
    • /
    • 2001
  • The disposal of sewage sludge using landfills and ocean dumping is no longer a viable option due to land scarcity and increasingly stringent environmental control regulations. As such, various efforts have been made to develop new sewage sludge recycling technologies. This work investigates the fundamental physical and chemical characteristics of rural type sewage sludge from Chungnam province in South Korea. The average moisture content, ignition loss, elementary analysis, and average heating value of the sewage sludge samples were examined. The average moisture content of the dewatered sludge was about 80%, while the organic matter was about 50% of the total solid sludge weight. The average heating value of a sewage sludge and petroleum coke waste mixture(1:1 weight ratio) was about 5,000 ㎉/kg, thereby indicating a high potential for energy recycling.

  • PDF

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.