• Title/Summary/Keyword: Waste oil

Search Result 533, Processing Time 0.03 seconds

A Comparison of Environmental Risk Perceptions between General Public and Experts (일반인과 전문가의 환경문제에 대한 위해도 인식 차이)

  • 장은아;박종연;임영욱;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.75-84
    • /
    • 2001
  • Differences in risk perception on major environmental issues between general public and environmental experts were investigated in this study. Questionnaire surveys were conducted to samples from general public and environmental experts during March and April, 2000. Total number of responses was 1,126 including 773 persons from general public and 353 experts. Risk perceptions on 26 environmental issues were related with the need to regulate each issue, controllability, experience, political views, interest in environmental problem, satisfaction of environment, severity of environmental pollution. There was statistically significant difference in risk perceptions between general public and experts. Overall, general public was likely to perceive risks associated with environmental problem, as well as social need to regulate these problems more than experts. The issues with high risk perception and need to regulate were 'automobile exhaust', 'industrial air pollution', ocean pollution by industrial waste and oil exhaust', 'air pollution by chemicals', 'surface water pollution by waste from household', 'industrial and hospital waste', 'surface water pollution by pesticide'and'sewage and food waste'. Consequently, it seems necessary to manage these issues, prior to others.

  • PDF

Unconditional Clearance Levels for Releasing Radioactive Materials Contaminated with Major Radionuclides from Regulatory Control

  • Cheong Jae Hak;Jeong Chan Woo;Park Won Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.49-55
    • /
    • 2005
  • Unconditional clearance levels were derived for fifteen short-lived radionuclides. Due to the uncertainty of long-term radiological impact analysis, alpha emitting nuclides and nuclides with half-lives longer than 30 years (except for C-14) were excluded from the scope of this study. The candidate waste streams are solid wastes and waste oil generated from nuclear power reactors. The clearance levels were derived by generic assessment for enveloping scenarios, along with specific assessment for each detailed scenario such as landfill, incineration and recycling. The derived values lie in the range from 0.01 to 100 Bq/g.

  • PDF

Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment (폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발)

  • Kim, Seong-Yeon;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

Production of Poly(3-hydroxybutyrate) Using Waste Frying Oil (Waste frying oil를 사용한 Poly(3-Hydroxybutyrate) 생합성)

  • Kim, Tae-Gyeong;Lee, Woosung;Gang, Seongho;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 2019
  • In this study, the optimal growth and poly(3-hydroxybutyrate) (PHB) biosynthesis of Pseudomonas sp. EML2 were established using waste frying oil (WFO) as a cheap carbon source. The fatty acid composition of WFO and fresh frying oil (FFO) were analyzed by gas chromatography. The unsaturated and saturated fatty acid contents of the FFO were 82.6% and 14.9%, respectively. These contents changed in the WFO. The compositional change in the unsaturated fatty acid content in the WFO was due to a change in its chemical and physical properties resulting from heating, an oxidation reaction, and hydrolysis. The maximum dry cell weight (DCW) and PHB yield (g/l) of the isolated strain Pseudomonas sp. EML2 were confirmed under the following culture conditions: 30 g/l of WFO, 0.5 gl of $NH_4Cl$, pH 7, and $20^{\circ}C$. Based on this, the growth and PHB yield of Pseudomonas sp. EML2 were confirmed by 3 l jar fermentation. After the cells were cultured in 30 g/l of WFO for 96 h, the DCW, PHB content, and PHB yield of Pseudomonas sp. EML2 were 3.6 g/l, 73 wt%, and 2.6 g/l, respectively. Similar results were obtained using 30 g/l of FFO as a carbon source control. Using the FFO, the DCW, PHB content, and PHB yield were 3.4 g/l, 70 wt%, and 2.4 g/l, respectively. Pseudomonas sp. EML2 and WFO may be a new candidate and substrate, respectively, for industrial production of PHB.

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.

Performance of Pilot-Scale Biodiesel Production System (파일럿 규모의 바이오디젤 생산공정의 실증연구)

  • Jeong, Gwi-Taek;Park, Jae-Hee;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • Biodiesel (fatty acid alkyl esters), which is produced from sustainable resources such as vegetable oil, animal fat and waste oils, have used to as substitutes for petro-diesel. In this study, we investigate the performance of 30 L and 300 L pilot-scale biodiesel production system using alkali-catalyst transesterification from soybean oil and rapeseed oil produced at Jeju island in Korea. The 30 L-scale biodiesel production was performed to in the condition of reaction temperature $65^{\circ}C$, catalyst amount 1% (w/w) and oil to methanol molar ratio 1 : 8. At that reaction condition, the fatty acid methyl ester contents of product are above 98% within reaction time 30 min. Also, the conversion yield of over 98% was obtained in 300 L-scale biodiesel production system using rapeseed oil and soybean oil. The quality of biodiesel produced from reaction system was satisfied to recommended quality standard of Korea. Our results may provide useful information with regard to the scale-up of more economic and efficient biodiesel production process.

A Study on the Grinding Characteristics according to Oil Mist Supply Method (오일 미스트 분사 방법에 따른 연삭특성)

  • 허남환;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.254-257
    • /
    • 2002
  • As the large Coolant amount used of a machine holds mass serious trouble recently, an environment pollution is increased, and a machine is conquering large specific gravity in an empty cost plane. It is the stage that must reexamine the parts washing that processing is later with this current way or a problem of a liquid waste treatment back. The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the grinding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below -$25^{\circ}C$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air and oil mist supply direction were done.

  • PDF

Effect of temperature on torrefaction of food waste to produce solid fuel (반탄화를 통한 음식물쓰레기의 연료화에서 온도에 대한 영향 비교)

  • Kim, Hyunsook;Yoo, Jaemin;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.235-240
    • /
    • 2014
  • In this study, the torrefaction of food waste was conducted to characterize its product, to find out effect of the operating temperature and to assess the feasibility of being used as fuel. The operating temperature was varid from $180^{\circ}C{\sim}270^{\circ}C$ and heat was provided by using nitrogen gas or waste oil heat carrier. The solid yield and moisture content were reduced were reduced as temperature increased. The moisture content reduction and thermochemical conversion were observed at higher than $240^{\circ}C$. At low operating temperature, heat transfer efficiency was higher with wast oil heat carrier. As temperature increases, there was not difference in heat transfer efficiency of two different heating methods. The lower heating value product was increased from 660 to 6,400 Kcal/kg with nitrogen gas and 6,890 Kcal/kg with waste oil heat carrier. The elemental analysis indicates that, as temperature increases, the carbon content of product increases and oxygen content decreases. From the analysis of O/C and H/C, the torrefaction product was close to low grade coal. The characteristics of fuel converted from the food subsequent thermochemical treatment.