• Title/Summary/Keyword: Waste coffee powder

Search Result 7, Processing Time 0.021 seconds

Preparation and Sensory Characteristics of Chocolate with Added Coffee Waste (커피 폐원두박을 이용한 초콜릿 제조 및 관능적 특성)

  • Yoo, Kyung-Mi;Song, Mi-Ran;Ji, Eun-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.1
    • /
    • pp.111-116
    • /
    • 2011
  • The purpose of this study was to evaluate the optimum ratio of coffee waste to chocolate for the preparation and investigation of the sensory characteristics of coffee chocolates. Color values(L-value, redness, and yellowness), total flavonoids, radical scavenging activity, and sensory characteristics of coffee chocolates made with various concentrations of additives were measured. The coffee waste powders were added at weight percentages of 0, 1, 2, 3, and 4%. As the ratio of coffee powder to chocolate increased, total flavonoid content and radical scavenging activity increased. In sensory evaluation, significant differences(p<0.05) were shown in taste, bitterness, texture, and overall acceptability depending on the amount of coffee waste powder added. The optimal ratio for sensory acceptability of coffee chocolate was 2% added coffee waste powder.

Impact of Waste Coffee Residue Disposal on the Environment and Anti-microbic Activity of Oyster Shell Waste

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-80
    • /
    • 2018
  • The objective of this research paper is to discuss the waste coffee residue disposal and its environmental effects on the environment. As we know, coffee is one of the most demand and swallowed beverages in the world, which leads to large quantities of solid waste. Which can be toxic and a lot of environmental problems occur. In developing countries, there is a lack of proper coffee waste residue management. The coffee beans and residues contain several organic compounds. The wastewater from coffee industry emitted several pollutants (highly concentrated) and it contaminates the soil, ground waters, aquatic life, and also human health. Hence it is essential to treat the coffee waste residues. Mean while, oyster shell waste and its disposal also a big environmental challenge in the coastal regions of southeast Korea. In this paper, we focused the treatment of coffee waste residue with oyster shell waste powder. Primarily, oyster shells are calcinated at higher temperatures and investigated the calcined CaO powder as an anti microbic agent to the bacteria presented in coffee waste residues. We successfully applied calcium oxide from oyster shell waste, as an antimicrobic agent.

Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment

  • Thenepalli, Thriveni;Ramakrishna, Chilakala;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2017
  • Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids. The waste water coming out of coffee industries has high concentration of organic pollutants and is very harmful for surrounding water bodies, human health and aquatic life if discharged directly into the surface waters. Hence it is essential to treat and manage the coffee waste. Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. In the study, the oyster shell waste was used to treat the coffee waste and its effluents. Oyster shells are calcined at $1000^{\circ}C$ for 2 h, and allowed to test the calcined CaO powder ability to inhibit the growth of bacteria in different aging coffee wastes. Calcined oyster shell powder showed anti-bacterial effect that inhibited cell growth of Escherichia coli and other bacterial forms. The antimicrobial activity of calcium oxide from oyster shell waste for biological treatment and utilization as a fertilizers with economic ecofriendly in nature.

Effect of application of coffee sludge and dried food waste powder on the growth Peucedanum japonicum Thunberg

  • Jeon, Young-Ji;Hwang, Hyun-Chul;Eun, Jin-A;Jung, Samuel;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.193-204
    • /
    • 2020
  • This experiment was conducted to study the effect of organic fertilizer on the growth of Peucedanum japonicum Thunberg and the change of soil chemical characteristics. The organic matter contents of coffee sludge and dried food waste powder were 44.26 and 51.18%, respectively. These values exceed the organic matter content of organic fertilizers recommended by the Rural Development Administration (RDA) of South Korea by more than 30%. Accordingly, they indicate the possibility of their use as organic fertilizers. The results from the analysis of soil properties after cultivation showed that the organic matter content of coffee sludge amended soils was two-fold higher than that of dried food waste powder amended soils. However, the content of available phosphorus was two times lower in the coffee sludge amendments. It is expected that the dried food waste powder was actively used to decompose organic substances, and that phosphoric acid was added by the soil microorganisms used to decompose organic substances. In terms of Peucedanum japonicum Thunberg growth, leaf discoloration was observed for all treatments except with the standard rate of dried food waste powder. The standard rate of dried food waste powder also produced relatively better results than other treatments with regard to other growth characteristics such as root length (34.08 cm), root diameter (0.78 cm), and fresh root weight (4.77 g plant-1). Therefore, the standard rate of dried food waste powder produced better results than other treatments and can be used as an organic fertilizer in the growth of Peucedanum japonicum Thunberg.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

Analysis of Radon Reduction Effect Using Coffee Waste Mixture (커피 찌꺼기 혼합물을 활용한 라돈 저감 효과 분석)

  • Je, Jae-Yong;Kim, Gyeong-Min;Kim, Yul-Min;Lee, Hyun-Woo;Park, Ji-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.855-860
    • /
    • 2021
  • Coffee is a popular beverage not only in Korea but also around the world, and its consumption is on the rise. As coffee consumption increases, coffee waste are also increasing, and recycling is attempted in various fields. However, these recycling methods require complex recycling processes and specialized skills. However, in this study coffee waste, agar powder, and powdered glue were mixed in an appropriate ratio and used as a cement building finishing material. This recycling method has a simple manufacturing method and was shown to improve indoor air quality by delaying radon emitted from cement walls for 2.5 hours with one application and 3.9 hours with two applications. In addition, it was shown that after applying the coffee waste mixture, it was applied twice to close the cracks that occurred during the drying process, thereby prevent the coffee waste from falling off the wall for aesthetic perfection.

Effect of the Addition of Binders on the Fuel Characteristics of Wood Pellets (바인더의 첨가가 목재 펠릿의 연료적 특성에 미치는 영향)

  • Ahn, Byoung Jun;Chang, Hee-Sun;Cho, Seong Taek;Han, Gyu-Seong;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.475-489
    • /
    • 2013
  • This work was conducted to investigate the effect of the addition of binders, such as rapeseed flour, coffee waste, bark, pine cone and lignin powder, on the fuel characteristics of the pellets fabricated with larch and tulip tree sawdust. Moisture content, bulk density and higher heating value of most pellets fabricated with the binders exceeded the 1st-grade pellet standard designated by Korea Forest Research Institute, but ash content of the pellets fabricated with rapeseed flour or bark of 10 wt% on the dry weight basis of sawdust was satisfied with just the 2nd- or 3rd-grade standard. The durability of tulip tree-pellets was positively influenced by the addition of rapeseed flour, coffee waste or lignin powder and increased with increasing the amount of the binders. For larch-pellets, the increase of binders did not greatly affect the durability, and even the durability reduced with the increase of bark or pine cone. From the microscopic observation, the obvious feature of pellet surfaces was not identified by the type of binder but by the addition amount of the binder. In summary, the addition of binders contributed to the fuel characteristics of wood pellets, and particularly the characteristics of wood pellets fabricated with coffee waste improved greatly. Therefore, if the binders are secured sufficiently with a reasonable cost, it might be possible to commercialize wood/binder pellets, which have better fuel characteristics than conventional wood pellets.