• Title/Summary/Keyword: Waste battery

Search Result 118, Processing Time 0.028 seconds

Cluster-based Energy-aware Data Sharing Scheme to Support a Mobile Sink in Solar-Powered Wireless Sensor Networks (태양 에너지 수집형 센서 네트워크에서 모바일 싱크를 지원하기 위한 클러스터 기반 에너지 인지 데이터 공유 기법)

  • Lee, Hong Seob;Yi, Jun Min;Kim, Jaeung;Noh, Dong Kun
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1430-1440
    • /
    • 2015
  • In contrast with battery-based wireless sensor networks (WSNs), solar-powered WSNs can operate for a longtime assuming that there is no hardware fault. Meanwhile, a mobile sink can save the energy consumption of WSN, but its ineffective movement may incur so much energy waste of not only itself but also an entire network. To solve this problem, many approaches, in which a mobile sink visits only on clustering-head nodes, have been proposed. But, the clustering scheme also has its own problems such as energy imbalance and data instability. In this study, therefore, a cluster-based energy-aware data-sharing scheme (CE-DSS) is proposed to effectively support a mobile sink in a solar-powered WSN. By utilizing the redundant energy efficiently, CE-DSS shares the gathered data among cluster-heads, while minimizing the unexpected black-out time. The simulation results show that CE-DSS increases the data reliability as well as conserves the energy of the mobile sink.

An Energy Saving Protocol to Eliminate Overhearing Problem in Active RFID System (능동형 RFID 시스템에서 태그의 Overhearing을 제거하기 위한 에너지 절약 프로토콜)

  • Lee, Chae-Seok;Kim, Dong-Hyun;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Reducing the energy that consumed by tag is a key requirement for the wider acceptance of the active RFID systems that use battery constrained tags. When the reader is not interrogating, the active RFID standard protocols try to reduce energy consumption of tags by using sleep mode. On sleep mode tags is active by receiving a specific signals from reader, until tag receive a sleep mode command from the reader, a tag waste energy for remaining in RX mode. Overhearing is a state of a tag in which it wastes energy for maintaining active RX state while there is no frame destined to it. According to our analysis, the amount of energy consumed by a tag due to overhearing is several time larger than that consumed by the effective communication. We propose RANO(Reservation Aloha for No Overhearing) that is designed to inform a tag of its effective communication intervals to eliminate overhearing problem in active RFID communication. The performance of the proposed protocol was evaluated through the real world by changing the number of tags and size of data. The result of an experiment, the proposed protocol performed saving about 22 times less than the standard protocol did.

Adsorption Behaviors of Nickel Ion on the Manganese Dioxide Powder (이산화망간 미립자(微粒子)의 니켈이온 흡착(吸着) 거동(擧動))

  • Baek, Mi-Hwa;Kim, Min-Kyung;Kim, Dong-Su;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • The adsorption features of nickel ion in wastewater on manganese dioxide from spent batteries were investigated for its usage as an adsorbent. The aquatic behavior of nickel ion was characterized by MINTEQ program and the considered influential variables on the adsorption of nickel ion were its initial concentration, reaction temperature, the amount of adsorbent, and pH. The adsorption ratio of nickel ion decreased with increasing its initial concentration and thermodynamic estimation has been carried out based on the adsorption characteristics of nickel ion depending on temperature. In addition, the adsorption of nickel ion was shown to be promoted according to the amount of manganese dioxide and a lot of nickel ions were adsorbed as the solution pH was raised.

Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid (폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Environmental friendly leaching process for the recovery of cobalt and lithium from the $LiCoO_2$ was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant and hydrogen peroxide, reaction time and temperature as well as the pulp density were tested to obtain the most effective conditions for the leaching of cobalt and lithium. The results showed that the latic acid was the most effective leaching reagent for cobalt and lithium among the organic acids and was reached about 99.9% of leaching percentage respectively. With the increase of the concentration of citric acid, hydrogen peroxide and temperature, the leaching rate of cobalt and lithium increased. But the increase of pulp density decreased the leaching rate of cobalt and lithium.

A Study on the Electrochemical Kinetics of Electrowinning Process of Valuable Metals Recovered from Lithium-ion Batteries (폐리튬이온전지로부터 유가금속 회수를 위한 전해채취 공정 전기화학 반응속도론적 연구)

  • Park, Sung Cheol;Kim, Yong Hwan;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.59-66
    • /
    • 2022
  • To investigate the rate-determining step of nickel, cobalt and copper electrowinning, experiments were conducted by varying the electrolyte temperature and agitation speed using a rotating disc electrode. Analyzing the rate-determining step by calculating the activation energy in the electrowinning process, it was found that nickel electrowinning is controlled by a mixed mechanism (partly by chemical reaction and partly by mass transport), cobalt is controlled by chemical reaction, and copper is controlled by mass transfer. Electrowinning of nickel, cobalt and copper was performed by varying the electrolyte temperature and agitation speed, and the comparison of the current efficiencies was used the determine the rate-determining step.

Thirteen-year Experience of Permanent Epicardial Pacing in Children (소아연령군에서의 영구 심외막 심박 조율 13년 경험)

  • 한국남;임홍국;김웅한;김용진;노준량;배은정;노정일;윤용수;안규리
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.499-503
    • /
    • 2004
  • Background: We investigated the longevity, thresholds of epicardial pacemaker and causes of reoperation in the pediatric patients who underwent epicardial pacemaker implantation performed during the last 13 years Material and Method: 121 operations were performed in 83 patients from January 1989 to July 2002. We analyzed the stimulation threshold, resistance, R-wave and P-wave, and sensitivity of pacemaker lead at initial implantation. Longevity and causes of reoperations were investigated. Result At implantation, epicardial ventricular mean stimula-tion threshold was 1.2$\pm$0.1 (0.1∼5) mV, mean resistance was 519.1$\pm$18.1 (319∼778) Ohm, and mean R-wave sensitivity was 8.9$\pm$0.7 (4∼20) mV, and mean P wave sensivity was 2.5$\pm$0.7 (0.4∼12) mV. The mean longe-vity of pacemaker generator was 64.7$\pm$3.7 (2∼196) months. The reoperation free rate was 94.6% for 1 year, 93.6% for 2 years, 80.8% for 5years, 63.7% for 7 years, and 45.5% for 10 years. The causes of reoperation were battery waste in 26 cases and lead malfunction in 9 cases. There was no postoperative death related to pacemaker malfunction. Conclusion: in the childrens, average longevity of epicardial pacemaker was within accep-table range. 19.1% of the patients required pacemaker related reoperation. However, recent developments, including steroid eluting lead, 6.7% of the patients required pacemaker related reoperation, look promising in expansion of pacemaker life span.

EV Energy Convergence Plan for Reshaping the European Automobile Industry According to the Green Deal Policy (그린딜 정책에 따른 유럽자동차 산업재편의 EV 에너지 융합방안)

  • Seo, Dae-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.40-48
    • /
    • 2021
  • The paper dealt with the fact that the green deal took place when the demand for electrical energy surged. However, the procurement of electric vehicles and much of the electric energy of the future still depends on fossil fuels. Accordingly, the importance of the IT industry is highlighted, and the demand for hydrogen-electric vehicles and related industries increases. The method of this study investigated the relevance of EV charging as a future next-generation power source rather than the electric energy demand of the IT industry. This study derives the correlation between industrial electricity and household energy PPP according to economic growth through empirical regression analysis. As the result, it was found that the amount of change, including electric and next-generation electric vehicles, was significant for on thirds of the countries in the change in purchasing power compared to GDP. This affects overall purchasing power as twelve out of thirty two countries with EV demand (Italy, Canada, Switzerland, Poland, Slovenia, Germany, Slovakia, Finland, Sweden, Czech Republic, Estonia, Denmark) are more sensitive to electric energy. This is related to the charging of EVs or hydrogen as the next-generation power of the future rather than the electric energy demand of the IT industry. By preventing waste of unused electricity of IT-electric energy sources and charging-preserving hydrogen electricity, it seems indispensable to prepare for the national IT power conservation buffer facility for supply and demand in future growth.

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.