• Title/Summary/Keyword: Waste Stabilization

Search Result 191, Processing Time 0.023 seconds

A field study on early stabilization of waste landfill using air injection and leachate recirculation (공기주입과 침출수 재순환 방법을 이용한 폐기물 매립지 조기안정화에 관한 현장 실험 연구)

  • Yoon, Seok-Pyo;Zhao, Xin;Lee, Nam-Hoon;Jeon, Yeon-Ho;Byun, Young-Deog;Ahn, Young-Mi;Min, Ji-Hong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • Field study was conducted for 5 months to investigate the effect of leachate recirculation on aerobic landfill stabilization at active landfilling site. The area of field experiment was $24{\times}24m$ and 9 vertical air injection wells with screen ranging 3~9 m were installed. Aerobic landfill operation for 5 months increased average internal landfill temperature to $70^{\circ}C$ and 8 % of landfill height was settled down. $94m^3$ of leachate was recirculated for 1 month to increase moisture content of landfill to favor microbial degradation of organic matter, which resulted in temporary increase of groundwater level and anaerobic environment. But leachate recirculation triggered increase of internal landfill temperature of neighboring monitoring well. Because excessive leachate recirculation decreased internal landfill temperature by cooling effect, internal landfill temperature should be checked to avoid abrupt decrease of temperature during leachate recirculation. Also, to prevent anaerobic environment, intermittent leachate recirculation was recommended.

Analysis by Environmental Factor of Similar Closed Non-sanitary Landfills (사용종료된 유사비위생 매립지들의 환경인자 분석)

  • Lee, Byungchan;Lee, Minhee;Park, Sangchan;Jeong, Seonki;Han, Yangsu;Yeon, Ikjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.27-33
    • /
    • 2009
  • In this study, it was analysed physical characteristics, TS, moisture, C/N ratio, leaching test, and element analysis in landfill wastes of 10 years old without landfill pretreatment. The Organic material content was 7.2%~23.5% and soil was the main inorganic materials which it's rate was 54.1%~71.0%, in landfill wastes. The results of TS, VS, and moisture were represented 51.5%~68.1%, 23.6%~56.1%, 32.0%~48.4%, respectively. The analysis of hazardous materials did not indicate Hg, $Cr^{+6}$, CN, Organic Phosphorus, TCE and PCE, however the Pb of leaching materials showed 0.023~0.092 mg/L, which was the highest. As the result of the element analysis, C was 47.74%~56.72%, N was 4.09%~9.92%, the C/N ratio was 5.76~12.57 and the result of soils around landfill was the highest heavy material, Pb, 2.465 mg/kg~10.251 mg/kg. The objectives of this paper are to investigate states, stabilization of these closed landfills and to gain suitable data for post-closure care using some parameters through analysis of landfill environment.

  • PDF

Economical Feasibility of the Treatment Methods of the Dredged Sediments from Contaminated Agricultural Reservoirs (농업용 저수지 준설토의 처리 공법에 따른 경제성 분석)

  • Oh, Kyoung-Hee;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.756-762
    • /
    • 2013
  • The economical feasibility was conducted to find the adequate method to treat the dredged sediments from agricultural reservoirs in a pilot project that had been operated to improve the quality of water and benthic environments by dredging of contaminated sediments. For benefit/cost (B/C) analysis, the net expenses were considered as the costs of project, and the benefits were calculated from the saving of waste-treatment cost through reuse of dredged sediment, the saving of construction cost of settling pond, and the values of retained water by dredging. Although the economic feasibility depended on the sites of operation, the average B/C value of the pilot project was estimated as 1.32, indicating this project is economically feasible. Depending on the treatment methods, the B/C values were in the order of the methods of coagulating sedimentation, machinery dewatering, stabilization through exothermic reaction, and soil improvement and stabilization. The machinery dewatering method is estimated as the most adequate one to treat the dredged sediments because of the minimum riskiness of secondary pollution, the recyclability, and its economic feasibility.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

A Study on the pH Characteristic of Recycle Aggregate According to Test Methods and Elapsed Time (측정방법 및 시간경과에 따른 순환골재의 pH 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Jong-Chan;Lee, Sae-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.61-68
    • /
    • 2011
  • The pH of recycled aggregate is over 12 because of high alkalinity of cement. This high alkalinity give circumstance harmful effect. The high alkalinity of recycled aggregate can appear variously according to aggregate properties, elution time of alkalinity, aggregate size, and so on. This study analyzed recycled aggregate properties according to wet and dry type manufacture process; different test methods: waste official test, soil contamination official test, BS EN 1744-3 standard; elution time and different size to test effects of various condition. These test results can contribute to solving environmental problems by recycled aggregate. In the test results, pH of recycled aggregate was as higher as smaller particle size and as time elapsed. There was no difference between dry and wet type recycled aggregate except for difference according to elapsed time. Waste official test method got the highest pH value between pH test methods. So unified pH test method need to test recycled aggregate pH.

  • PDF

Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area

  • Oh, Se Jin;Oh, Seung Min;Ok, Yong Sik;Kim, Sung Chul;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.525-532
    • /
    • 2014
  • Since mine wastes were merely dumped in the mine waste dump, they have produced acid mine drainage (AMD). Therefore, main objective of this study was to evaluate the effect of coal combustion products (CCPs) on heavy metal stabilization and detoxification for mine wastes. Total six treatments for incubation test were conducted depending on mixing method (completely mixing and layered). Also, lysimeter experiment was conducted to examine efficiency of polyacrylamide (PAM) on reduction of mine wastes erosion. Result of incubation test showed that concentrations of soluble aluminium (Al) and iron (Fe) in leachate decreased compared to control. The lowest soluble Al and Fe in leachate was observed in 50% mixed treatment (14.2 and $1.03mg\;kg^{-1}$ for Al and Fe respectively) compared to control treatment (253.0 for Al and $52.6mg\;kg^{-1}$ for Fe). The pH of mine wastes (MW) and leachate increased compared to control after mixing with CCPs and ordered as control (MW 6.4, leachate 6.3) < 10% (MW 7.7, leachate 7.1) < 20% (MW 9.0, leachate 7.8) < 30% (MW 9.5, leachate 8.3) < 40% (MW 9.9, leachate 8.5) < 50% (MW 10.5, leachate 8.6). Application of PAM, both in liquid and granular type, dramatically decreased the suspended solid (SS) concentration of CCPs treatments. Reduction of SS loss was ordered as MW70CR30L ($24.4mg\;L^{-1}$) > MW70CR30LPL ($6.7mg\;L^{-1}$) > NT ($3.1mg\;L^{-1}$) > MW70CR30M ($1.6mg\;L^{-1}$) > MW70CR30MPL ($1.1mg\;L^{-1}$) > MW70CR30PGM ($0.7mg\;L^{-1}$) > MW70CR30LPG ($0.5mg\;L^{-1}$) > MW70CR30MPG ($0.4mg\;L^{-1}$). Overall, application of CCPs can be environmental friendly and cost-effective way to remediate coal mine wastes contaminated with heavy metals. In addition, use of PAM could help to prevent the erosion coal mine wastes in mine waste disposal area.

A Study on the Dimensional Stability of Archaeological Waterlogged Salix koreensis Andersson Treated with Recycled PEG (재활용 PEG를 이용한 수침 고버드나무의 치수안정화 연구)

  • Yang, Seok-Jin;Lee, Soo;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.635-641
    • /
    • 2014
  • Archaeological waterlogged woods require a process of dimensional stabilization for their conservation. PEG is the most widely used in the conservation of archaeological waterlogged wood. One of the easiest and commonly used methods is the impregnation of 40% polyethylene glycol followed by vacuum freeze drying. However, the waste fluid produced from the PEG treatment is black in color and has a severe odor due to the organic matter extracted from the wood. Thus It cannot be recycled and it was just thrown out. Color of waste fluid can be decolored with oxidation reaction by hydrogen peroxide. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Dimensional stability of archaeological waterlogged Salix koreensis Andersson was studied with pure or recycled PEG. The ratio of impregnation solutions were 10:0, 7:3, 5:5, 3:7, 0:10 (pure PEG : recycled PEG). Impregnation process was carried out by putting the wood specimens 10% PEG solution for 5days, 20% for 5 days, 30% for 5 days finally 40% for 5 days. All of the specimens showed the weight change rate of 25%. SEM results provided that the dimensional change of were less than 4% PEG impregnated specimens. Comparing with pure PEG impregnation system, conservation precess mixed PEG also showed no significant changes. Conclusively, the recycled PEG can be used for archeological waterlogged wood conservation precess.

Stabilization of backfill using TDA material under a footing close to retaining wall

  • Arefnia, Ali;Dehghanbanadaki, Ali;Kassim, Khairul Anuar;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Reutilization of solid waste such as Tire Derived Aggregate (TDA) and mixing it with soft soil for backfill material not only reduces the required volume of backfill soil (i.e., sand-mining procedures; reinforcement), but also preserves the environment from pollution by recycling. TDA is a widely-used material that has a good track record for improving sustainable construction. This paper attempted to investigate the performance of Kaolin-TDA mixtures as a backfill material underneath a strip footing and close to a retaining wall. For this purpose, different types of TDA i.e., powdery, shredded, small-size granular (1-4 mm) and large-size granular (5-8 mm), were mixed with Kaolin at 0, 20, 40, and 60% by weight. Static surcharge load with the rate of 10 kPa per min was applied on the strip footing until the failure of footing happened. The behaviour of samples K80-G (1-4 mm) 20 and K80-G (5-8 mm) 20 were identical to that of pure Kaolin, except that the maximum footing stress had grown by roughly three times (300-310 kPa). Therefore, it can be concluded that the total flexibility of the backfill and shear strength of the strip footing have been increased by adding the TDA. The results indicate that, a significant increase in the failure vertical stress of the footing is observed at the optimum mixture content. In addition, the TDA increases the elasticity behaviour of the backfill.

Evaluation and improvement of the stabilization process of the MSW Incinerator fly ash into cement (시멘트를 이용한 소각비산회의 안정화공정에 따른 문제점과 해결방안)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • This study was initiated to evaluate and resolve the potential problems caused as the MSWI(Municipal Solid Waste Incinerator) fly ash were stabilized and solidified into the cement. The physical and chemical properties of fly ashes (K and M) used in this study were fixed according to the operating conditions of the incineration plant. The compressible strength of the solidified matrix used in this study were measured at 7, 28, and 56 curing days, respectively, to evaluate the stability of the solidified matrix, which were further analyzed by XRD and SEM. The experimental results obtained in this study showed that the relatively long hours of curing periods were needed to solidify the fly ash. The solidified matrix containing K ash had the high and excellent compressible strength of $200{\;}kg/\textrm{cm}^2$, after 56 curing days, but was not good enough in appearance. The analytical data by SEM confirmed that the alkaline Na and K, which are highly dissolved in water, were included in the fly ash and evenly distributed into the exterior surface of the solidified matrix. Whereas, the solidified matrix containing M ash never showed such a compressible strength as shown in the K ash due to the severe fracture, even as early as 7 curing days. Based on its XRD analysis, it appeared that both $C_2S$ and $C_3S$ highly related to the compressible strength were not crystallyzed into the solidified matrix. However, the compressible strength of the solidified and cemented M ash was remarkably improved by 100 times, after the alkalinity was washed out, which indicated that it is equivalent to 30 to 40g per one kg of fly ash.

  • PDF

Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond (고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF