• Title/Summary/Keyword: Waste Red mud

Search Result 30, Processing Time 0.023 seconds

Fluoride Removal from Aqueous Solutions using Industrial Waste Red Mud (산업폐기물인 적니를 이용한 불소 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.35-40
    • /
    • 2013
  • The present study was conducted to investigate the adsorption potential of red mud for fluoride removal. Different operation parameters such as the effect of contact time, initial concentration, pH, competing anions, seawater, adsorbent dose amount, and adsorbent mixture were studied. Nearly 3 hr was required to reach sorption equilibrium. Equilibrium sorption data were described well by Langmuir model and the maximum adsorption capacity of red mud was 5.28 mg/g. The fluoride adsorption at pH 3 was higher than in the pH range 5-9. The presence of anions such as sulfate, nitrate, phosphate, and bicarbonate had no significant effect on fluoride adsorption onto red mud. The fluoride removal by red mud was greater in seawater than deionized water, resulting from the presence of calcium and magnesium ion in seawater. The use of red mud alone was more effective for the removal of fluoride than mixing red mud with other industrial waste such as oyster shells, lime stone, and steel slag. This study showed that red mud has a potential application in the remediation of fluoride contaminated soil and groundwater.

Red Mud를 이용한 토양 및 슬러지내 중금속 제거 특성

  • 김이태;배우근;김우정;정원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.73-77
    • /
    • 2003
  • Red mud is a waste material formed during the production of alumina when the bauxite ore is subjected to caustic leaching. It is a brick-red colored highly alkaline (pH 10-12) sludge containing mostly oxides of iron, aluminum, titanium, and silica. Red mud, due to its high aluminum, iron, and calcium contents, has been suggested as a cheap adsorbent for removal of toxic metals (e.g., As, Cr, Pb, Cd) as well as for water or wastewater treatment. The basic advantage of red mud is its versatility in application. This study was conducted to evaluate the effect of red mud on stabilization and fixation of heavy metals (such as Pb, Cu, C $r^{6+}$, Cd, Zn) contained in the Al-coating sludge and soil. The results showed that the concentration of heavy metals leached from the treated sludge and soil was low, meeting the regulatory permit level.

  • PDF

A Study on Pre-Red Mud and Bio-Solids Applicability as Soil Stabilizer (Pre-Red Mud 및 Bio-Solids의 토양 안정화제 활용 가능성에 대한 연구)

  • Yang, Joo-Kyung;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.419-428
    • /
    • 2011
  • Recycling as a stabilizer of industrial by-product can be terms of the proper handling of industrial by-product and positive side in terms of recycling of waste. This study was performed to evaluate has the possibility as stabilizer by primary processing Pre-Red Mud and Bio-Solids which are generated as waste in soils contaminated with heavy metals and compared the efficiency with steel slug being applied in an existing site. In evaluation of the arsenic-fixing ability of stabilizer in batch test, Bio-Solids have the similar arsenic-fixing ability with Pre-Red Mud, which shows 17% h igher arsenic-fixing ability than PS Ball. Since the stabilization periods using Bio-Solids and Pre-Red Mud are faster than the PS Ball, they seems to be better stabilizer than PS Ball to decrease the leaching of arsenic in contaiminated soil.

Hydration Characteristics of Cement Paste Added Liquid and Neutralized Red Mud (액상 및 중화 레드머드를 첨가한 시멘트 페이스트의 수화특성)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.104-105
    • /
    • 2020
  • Red mud is a highly alkaline waste by-product of the aluminum industry. Although recycling of red mud is being actively researched, a feasible technological solution has not been found yet. In this study, we propose that neutralization of red mud alkalinity could assist in its use as a construction material. Neutralized red mud ( pH 6-8) was prepared by adding sulfuric acid to liquefied red mud (pH 10-12). After adding liquid and neutralized red mud to the cement paste, the heat of hydration was measured. As a result of the experiment, the calorific value of the cement paste with liquid red mud was lowered and delayed compared to the cement paste with neutralized red mud.

  • PDF

Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture (레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.

Characteristics of Soil Concrete Using Recycled Aggregates and Red Mud according to the Addition Amount of Binder (바인더 첨가량 따른 순환골재와 레드머드를 활용한 흙콘크리트의 특성)

  • Hong, Seok-Woo;Park, Kyu-Eun;Kim-Sang Jin;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.73-74
    • /
    • 2023
  • In this paper, the characteristics of soil concrete were examined using industrial waste red mud and construction waste circulating aggregate, and if unit cement of 250 kg/m3, it can be used as a soil packaging material by meeting the compressive strength standards for parking lots of SPS-KSCICO-001-2006:2020.

  • PDF

The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water (리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용)

  • Kim Eunji;Kim Naeun;Park Juyeong;Lee Heuiyun;Yoon Kwangsuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

An Experimental Study on Development of Eco-Friendly Color Concrete Using Industrial Waste Red Mud (산업폐기물 레드머드를 사용한 친환경 칼라 콘크리트 개발에 관한 실험적 연구)

  • Jeong, Dong-Young;Choi, Kyoung-Rag;Kim, Moon-Hoon;Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.929-939
    • /
    • 2007
  • Red mud is a waste generated by the aluminium industry, and its disposal is a major problem for this industry. Red mud has a reddish-brown color and superfine particle characteristics. So, it can be a promising pigment admixture for concrete industry. An experimental study was conducted to investigate the potential use of red mud in color concrete. The micro structures of red mud and iron oxide pigment such as porosity, pore size distribution, diameter of particle were analyzed with the aid of SEM, X-ray diffraction(XRD), and the infrared absorbance. Tests on physical properties of color concrete, such as strength, slump, early shrinkage crack patterns, and color characteristics were carried out and the results were reported in this paper.

Leaching of Iron and Aluminum from Red Mud and Preparation of Coagulants (적니로부터 철과 알루미늄의 침출 및 응집제의 제조)

  • Lee, Jae-Rok;Hwang, In-Gook;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.38-41
    • /
    • 2009
  • Red mud is generated as a waste byproduct during the production of aluminum hydroxide/alumina from bauxite ore in the Bayer process. In this study coagulants for wastewater treatment were prepared by leaching iron and aluminum from red mud with hydrochloric acid. The removal efficiency of heavy metal ions by the red mud coagulant increased with increasing the adjusted pH value of the synthetic wastewater. When the red mud coagulant was prepared, the leaching efficiency of Fe decreased with increasing the weight of red mud, while the pH value of the red mud coagulant increased. The solution of the red mud coagulant mixed with water was reacted again with red mud to produce the leached solution, which had higher concentrations of Fe and Al and a higher pH value than the red mud coagulant. Also, its pH value was comparable to that of other coagulants: $FeCl_3$ and $Fe_2(SO_4)_3$.

RESEARCH PAPERS : A STUDY ON REMOVAL OF PB2+ ION USING PELLET - TYPE RED MUD ADSORBENTS

  • Kim, Jung-Sik;Han, Sang-Won;Hwang, In-Gook;Bae, Jae-Heum;Shuzo Tokunaga
    • Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • The two kinds of pellet-type red-mud adsorbents (bead-type, crushed-type) were from red mud, which is generated as a by-product during the production of aluminum hydroxide from bauxite ore. The adsorption experiments of Pb^{2+} ion in the aqueous solution by these red-mud adsorbents were studied with a continuous adsorption ccolumn. As a result, the crushed-type adsorbent shows better performance in adsorption of Pb^{2+} than the bead-type adsorbent between the two types of the pellet-type adsorbents. The continusous adsorption experiment shows that the pellet-type adsorbents made from red mud have good performance for removal of Pd^{2+}. The breakthrough curves of the red-mud adsorbents were compared with that of activated carbon.