• Title/Summary/Keyword: Waste Lithium-ion battery

Search Result 37, Processing Time 0.027 seconds

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.

Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수)

  • Lee, So-Yeon;Lee, Dae-Hyeon;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.26-33
    • /
    • 2022
  • Owing to the demand for lithium-ion batteries, the recovery of valuable metals from waste lithium-ion batteries is required in future. A pyrometallurgical treatment is appropriate for recycling a large number of waste lithium-ion batteries, but Li loss to slag and dust present a significant challenge. This research investigated carbonation roasting and water leaching behaviors in Li-ion batteries by graphite addition to recover Li from the NCM-based cathode materials of waste Li-ion batteries. When 10 wt% of graphite was added, CO and CO2 gases were emitted with a rapid weight reduction at apporoximately 850 K, when heated in Ar and CO2 atmosphere. After the rapid weight reduction, NCM was decomposed and reduced to metal oxides and pure metals. In the carbonation roasting of black powder (NCM+graphite), O2 is generated via the decomposition of NCM, and an oxides, such as Li2O and NiO were were also generated. Subsequently, Li2O reacts with CO2 to generate Li2CO3, and a part of NiO was reduced by graphite to produce metal Ni. In addition, up to 94.5 % Li2CO3 with ~99.95 % purity was recovered via water leaching after carbonation roasting.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis (고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구)

  • Donghun Kang;Joowon Im;Minseong Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.

Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery (해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교)

  • Kim, Kyoungho;Na, Young Soo;Lee, Man Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • As emerging the new electric devices, the commercial lithium ion batteries have faced with various challenges. In this regard, many efforts to solve challenges have been tried. In order to solve the above problems in terms of development of a new secondary battery, we successfully demonstrated the two electrocatalysts, such as MCWB and PPY hydrogel, PPY hydrogel and MCWB showed typical H3-type BET isotherm, indicating that micro- and mesopores existed. Especially, in terms of voltage efficiency at the first cycle, PPY hydrogel was higher than that of MCWB, but lower than that of PtC. More interestingly, the PPY hygrogel based seawater battery exhibited charge-discharge reversibility during 20 cycles, and the voltage efficiencies ranged from 70.32 % to 77.35 % in cyclic performance test.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun;Kim, Yunok;Ahn, Chi-Yeong;Kim, Jinsoo;Sung, Yung-Eun;Cho, Yong-Hun;Kim, Seung-Soo;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-168
    • /
    • 2018
  • Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.