• Title/Summary/Keyword: Waste Heat Recycling

Search Result 132, Processing Time 0.019 seconds

Application of Membrane Technology in Thermochemical Hydrogen Production IS (iodine-sulfur) Process Using the Nuclear Heat (원자력 고온 핵 열을 이용한 열화학적 수소제조 IS(요오드-황) 프로세스에서의 분리막 기술의 이용)

  • Hwang Gab-Jin;Park Chu-Sik;Lee Sang-Ho;Kim Tae-Hwan;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.185-191
    • /
    • 2004
  • It summarized about the properties of thermochemical water-splitting iodine-sulfur process that was hydrogen production using the waste heat from the High Temperature Gas-Cooled Reactor (HTGR) recycling the heat of nuclear power. It was mainly explained about the application of membrane separation technique in IS process. Thermochemical water-splitting hydrogen production method using the high temperature nuclear thermal energy could be realized and remained to be solved the investigation subject. And, it is possible for mass-production of hydrogen such as one of the clean energy in future.

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Development of Grogged Clay Used Water-purified-sludge (정수슬러지를 사용한 조합토의 개발)

  • Jeong, Jae-Jin;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • People could not imagine living without tab water. However, the water filtering process at a purification plant used to produce tab water creates tons of sludge, which is generally wasted. This sludge waste consists of (1) mineral elements, such as sand, (2) organic materials, and (3) a coagulant, which agglomerates the two. As an enormous amount of sludge waste is generated every year, numerous studies have been carried out to identify how to deal with this problem. Currently, however, most of the sludge waste is directly discarded in landfills. In the present study, water-purified sludge waste received a heat treatment at $1300^{\circ}C$ and was then ground into particles to be used as a ceramic material. Next, the resultant particles were compounded with chamotte substitutes to produce grogged clay that is suitable for wheel-throwing ceramics. Consequently, the plasticity of the sludge waste decreased as the content of calcination increased. Thus, it is considered that wheel throwing is available only up to PBF-3. Thus, it is available for wheel throwing and has a high strength of 864 $kgf/cm^2$ with less than 0.2 percent of porosity and absorption ratio were displayed in PBF-2 at $1280^{\circ}C$ with 20 percent of calcination from the purified sludge. Therefore, the PBF-2 body produced in this study was considered to be capable of replacing grogged clay in the market.

Computer Simulation for Smelting Tretment of Waste Casting Sand (폐주물사의 용융처리에 관한 Computer Simulation)

  • Chung, Won-Sub;Min, Dong-Jun;Kim, Yong-Ha
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.24-30
    • /
    • 1996
  • The computcr s~mulatiun model in vanaus s~nelllng process for melling waste cashhg sand was developed by using energy and malcrial balance concept. This modcl can prcdict the coal, flux and oxygen conaumptron and thc volume and temperature of off-gas The ~niljor critical varlablcs for smclting process can be crplained by using the analysis of energy and malc~ialb alance. Thc Innst lmportarlt variables lor smelting process were h i ~ hpo st-combust~anr atla, high heat transfer crficiency and refractory pratcclion lechnalogy. For saving encrg), in this smelting proccss, selection of caw marerials i.e coal, flus was important, cspacially ubi~go f low volatile coal was prufitahle.

  • PDF

Synthesis of Cement Raw Materials by Melting of Industrial Wastes (폐기물의 용융처리에 의한 시멘트원료의 합성)

  • Hwang, Yeon;Sohn, Yong-Un;Chung, Hun-Saeng;Lee, Hong-Ki;Park, Hyun-Suh
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 1996
  • CZS(2Ca0 , SiO\ulcorner) phase of cement clinkcr was obtaincd by melting mixcd four indnstrial wasles of limestone sludge, waste Foundry sand, coal lly ash fiorn power plants and chernicas glasses. The effect ot mixing ratio of four rvastc mater~als ou the composnlg phascs in melled slag was investigated. Thc mixed wastes were meltcd to slag by heat under a constant basicity at 1370C. The shg consisted of p -CIS and C,AS(2CaO - A I P , . SiO,). The ratio of two phases was varied with mixing ~atioo f the waste materials. In order Lo increasc the amount ot j -C2S phase, the coal fly ash content should be reduced, while amount of the chemical glass be increased. The coal fly ash contcnt was the most imporlant factor in controlling phases of thc melted-slag.

  • PDF

Thermal based adsorption of daily food waste with the test of AI grey calculations

  • ZY Chen;Huakun Wu;Yahui Meng;ZY Gu;Timothy Chen
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.107-115
    • /
    • 2024
  • This study proposes the recycling of MVS as a value-added product for the removal of phosphate from aqueous solutions. By comparing the phosphate adsorption capacity of each calcined adsorbent at each temperature of MVS, it was determined that the optimal heat treatment temperature of MVS to improve the phosphate adsorption capacity was 800 ℃. MVS-800 suggests an adsorption mechanism through calcium phosphate precipitation. Subsequent kinetic studies with MVS-800 showed that the PFO model was more appropriate than the PSO model. In the equilibrium adsorption experiment, through the analysis of Langmuir and Freundlich models, Langmuir can provide a more appropriate explanation for the phosphate adsorption of MVS-800. This means that the adsorption of phosphate by MVS-800 is uniform over all surfaces and the adsorption consists of a single layer. Thermodynamic analysis of thermally activated MVS-800 shows that phosphate adsorption is an endothermic and involuntary reaction. MVS-800 has the highest phosphate adsorption capacity under low pH conditions. The presence of anions in phosphate adsorption reduces the phosphate adsorption capacity of MVS-800 in the order of CO 3 2-, SO 4 2-, NO 3- and Cl-. Based on experimental data to date, MVS-800 is an environmentally friendly adsorbent for recycling waste resources and is considered to be an adsorbent with high adsorption capacity for removing phosphates from aqueous solutions. This paper combines the advantages of gray predictor and AI fuzzy. The gray predictor can be used to predict whether the bear point exceeds the allowable deviation range, and then perform appropriate control corrections to accelerate the bear point to return to the boundary layer and achieve.

Preparation of Borosilicate Foamed Glass Body with Sound Absorption Characteristics by the Recycling Waste Liquid Crystal Display Glass (폐 LCD 유리를 이용한 흡음특성을 갖는 붕규산유리발포체 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.612-619
    • /
    • 2016
  • In this research, an alumino-borosilicate foamed glass with sound absorption property was prepared using the waste borosilicate glass obtained from the recycling process of waste liquid crystal display (LCD) panel. A 100 g of pulverized waste borosilicate glass with the particle size of under 325 mesh, was mixed with 0.3 g (wt/wt) of graphite, each 1.5 g (wt/wt) of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ as a foaming agent, and 6.0 g (wt/wt) of $H_3BO_3$ and 3.0 g (wt/wt) of $Al_2O_3$ as a pore control agent. Following mixture was under the foaming process for 20 minutes at a foaming temperature of $950^{\circ}C$. The result yielded the foaming agent with 45% of the opened porosity and 0.5-0.7 of the sound absorbing coefficient. This alumino-borosilicate foamed glass with the sound absorption property showed excellent physical and mechanical properties such as density of $0.21g/cm^3$, bending strength of $55N/cm^2$ and compression strength of $298N/cm^2$ which can be ideally used as sound absorption materials with heat-resisting and chemical-resisting property.

Characteristics of Bio-oil by Pyrolysis with Pig Feces (돈분을 이용한 열분해공정 바이오오일의 특성)

  • Kun, Zhu;Choi, Hong L.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The characteristics of the bio-oil produced by the pyrolysis process with pig feces was investigated in this paper. The continuous auger-type reactor produced bio-oil was maintained at the temperature range of 400 to $600^{\circ}C$, which was higher than a typical that in a conventional pyrolysis system. The pig feces was used as the feedstock. The bio-oil and its compositions were characterized by water analysis, heating values, elemental analysis, bio-oil compounds, by Gas Chromatography/Mass Spectrometry (GC/MS), and functional group by $^1H$ NMR spectroscopy. It was found that the maximum bio-oil yields of 21% w.t. was achieved at $550^{\circ}C$. This result suggested that this auger reactor might be a potential technology for livestock waste treatment to produce bio-oil because it is able to be improved to reach higher efficiency of bio-oil production in further study. The pyrolysis system reported herein had low heat transfer into the feedstock in the auger reactor so that it needs improve the heat conduction rate of the system in further study.

  • PDF

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.