• Title/Summary/Keyword: Waste Generation

Search Result 741, Processing Time 0.028 seconds

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

A Study on the Sustainable Fashion Design by Organic Cotton (오가닉 코튼[Organic Cotton]을 이용한 지속가능한 패션디자인)

  • Kim, Soo-Hyun;Lee, Jae-Jung;Chung, Hyun-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.115-131
    • /
    • 2007
  • By the turn of the century, our society has been gradually more interested in environmental problems than any other time. Ecological change spurred by industrial pollution is occurring beyond the borders of nations, and has emerged as a global issue. Such change is resulting in exhaustion of natural resources and energy, and serious climatic change. In this study, main focus regarding the process of the fashion product design system was placed on the sustainable fashion design of organic cotton as a positive and alternative suggestion. It is expected that the results of this study contribute to the fashion design planning not only for future generation but also for the present time. This study researched on brands that produced their fashion products using organic cotton. The following cases proved to possess sustainability in their product system. The results of this study can be summarized as follows: Firstly, sustainable design in organic cotton products has been a progressive ere-design in 2000s. It is mainly focus concerned with recycling and re-use of materials to protect environment. It is not chemical dependant and takes a particular care in eliminating waste water and energy in the dyeing process. It is an environmentally sustainable design better than all the other design processes. Secondly, it is a design that cares for the common good of society and the global system of fair trading. The fair trading of organic cotton products induced a change in the structure of production system, while defending human rights. It also gave benefits by promoting development in local society and progress in traditional skills. Not to mention that it contributed to building up the concept of transparency in the global economic system. Lastly, the brands emphasize their social responsibility and management ethics to observe environmental policy which is established to protect our nature and people. Their public information reminds customers of the importance of protecting the environment from diverse pollution. Moreover, they hold social events to promote public awareness for environmental Issues. This study dealt only with the organic cotton, a small subset of the subject of sustainable design. It can be extended and applied to various other sustainable fashion design as a solution for global environmental issues.

Conical Diffuser Design and Hydraulic Performance Characteristics in Bioreactor Using Empirical and Numerical Methods (원뿔형 산기관 설계와 생물반응조에서 수력학적 운전특성에 관한 실험 및 해석)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.633-643
    • /
    • 2015
  • In this study, we develop a highly efficient conical-air diffuser that generates fine bubble. By inserting a sufficient number of aerotropic microorganisms with dissolved oxygen from an air diffuser and minimizing the air-channel blockages within the air diffuser, we expect to improve the efficiency and durability of the decomposition process for organic waste. To upgrade the conventional air diffuser, we perform experiments and numerical analysis to develop a conical-type that generates fine bubble, and which is free from nozzle blockage. We complement the air-diffuser design by numerically analyzing the internal air-flow pattern within the diffuser. Then, by applying the diffuser to a mockup bioreactor, we experimentally and numerically study the bubble behavior observed in the diffuser and the 2-phase fluid flow in the bioreactor. The results obtained include statistics of the cord length and increased velocity, and we investigate the mechanisms of the fluid-flow characteristics including bubble clouds. Throughout the study, we systemize the design procedures for the design of efficient air diffusers, and we visualize the fluid-flow patterns caused by bubble generation within the mockup bioreactor. These results will provide a meaningful basis for further study as well as the detection of oxygen transfer and fluid-flow characteristics in real-scale bio-reactors using sets of air diffusers.

A Review on Efficient Operation Technology of Compost Depot (퇴비사의 효율적인 운영기술에 대한 고찰)

  • Yang, Il-Seung;Ji, Min-Kyu;Jeon, Byong-Hun
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.345-356
    • /
    • 2017
  • The composting is a biological process that converts organic matter into useful resources such as fertilizers. It is a continuous transition of microbial communities to adapt changes in organic matter and environmental conditions (carbonation rate, temperature, humidity, oxygen supply, pH, etc.). Most of the composting plants are located in the proximity of the residential areas. It is a general scenario where government authorities receive complaints from the local residents due to release of odor from the composting, and has become a social problem in Korea. Identification of dominant microorganisms, understanding change in microbial communities and augmentation of specific microorganism for composting is vital to enhance the efficiency of composting, quality of the compost produced, and reduction of odor. In this paper, we suggest the optimum operation conditions and methods for compost depot to reduce odor generation. The selection of the appropriate microorganisms and their rapid increase in population are effective to promote composting. The optimal growth conditions of bacteria such as aeration (oxygen), temperature, and humidity were standardized to maximize composting through microbial degradation. The use of porous minerals and moisture control has significantly improved odor removal. Recent technologies to reduce odor from the composting environment and improved composting processes are also presented.

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

Economic Feasibility Analysis of Building Seonam Biogas Combined Heat and Power Plant (서남 바이오가스 열병합발전 시설 건립의 경제적 타당성 분석)

  • Park, So-Yeon;Shin, Hyun-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.141-151
    • /
    • 2016
  • Recently, technology for energy recovery from waste has been increasing interest globally including the Korea. In Korea, we have interested in using biogas generated from the sewage treatment process. As one alternative, there are operating biogas combined heat and power plant. The generation amount of the Sewage Sludge are expected to grow in the future. For this reason, total processing cost of Sewage Sludge will increase. To solve this problem, it seems will be invested with the expansion of facilities that use biogas as energy. Therefore, quantitative information on such facilities is required. Thus, this study attempts to economic feasibility analysis for Seonam Biogas Combined Heat and Power Plant. Meanwhile, as the benefit items for economic feasibility analysis consider electricity supply benefit except for heat supply benefit. The average prices of electricity use were residence 123.69, commercial 130.46, and industry 102.59 won per kWh for the year 2015, In addition, the economic benefit are calculated to be residence 310.21, commercial 378.49, and industry 222.87 won per kWh. The results of economic feasibility analysis is NPV 72.18 billion won, B/C 1.90, IRR 37%, shows that economic validity of Seonam Biogas Combined Heat and Power Plant.

A Study on Electrodeionization for Purification of Primary Coolant of a Nuclear Power Plant (원자력 발전소의 일차 냉각수 정화를 위한 전기탈이온법의 기초연구)

  • Yeon, Kyeong-Ho;Moon, Seung-Hyeon;Jeong, Cheorl-Young;Seo, One-Sun;Chong, Sung-Tai
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.73-86
    • /
    • 1999
  • The ion-exchange method for the purification of primary coolant has been used broadly in PWR(pressurized water reactor)-type nuclear power plants due to its high decontamination efficiency, simple system, and easy operation. However, its non-selective removal of metal and non-radionuclides shortens its life, resulting in the generation of a large amount of waste ion-exchange resin. In this study, the feasibility of electrodeionization (EDI) was investigated for the purification of primary cooling water using synthetic solutions under various experimental conditions as an alternative method for the ion exchange. The results shows that as the feed flow-rate increased, the removal efficiency increased and the power consumption decreased. The removal rate was observed as a 1000 decontamination factor(DF) at a nearly constant level. For the synthetic solution of 3 ppm TDS (Total Dissolved Solid), the power consumption was 40.3 mWh/L at 2.0 L/min of feed flow rate. The higher removal rate of metal species and lower power consumption were obtained with greater resin volume per diluting compartment. However, the flow rate of the EDI process decreased with the elapsed time because of the hydrodynamic resistivity of resin itself and resin fouling by suspended solids. Thus, the ion-exchange resin was replaced by an ion-conducting spacer in order to overcome the drawback. The system equipped with the ion-conducting spacer resolved the problem of the decreasing flow rate but showed a lower efficiency in terms of the power consumption, the removal rate of metal species and current efficiency. In the repeated batch operation, it was found that the removal efficiency of metal species was stably maintained at DF 1000.

  • PDF

Design and Implementation of NMEA Multiplexer in the Optimized Queue (최적화된 큐에서의 NMEA 멀티플렉서의 설계 및 구현)

  • Kim Chang-Soo;Jung Sung-Hun;Yim Jae-Hong
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.91-96
    • /
    • 2005
  • The National Marine Electronics Association(NMEA) is nonprofit-making cooperation composed with manufacturers, distributors, wholesalers and educational institutions. We use the basic port of equipment in order to process the signal from NMEA signal using equipment. When we don't have enough one, we use the multi-port for processing. However, we need to have module development simulation which could multiplex and provide NMEA related signal that we could solve the problems in multi-port application and exclusive equipment generation for a number of signal. For now, we don't have any case or product using NMEA multiplexer so that we import expensive foreign equipment or embody NMEA signal transmission program like software, using multi-port. These have problems since we have to pay lots ci money and build separate processing part for every application programs. Besides, every equipment generating NMEA signal are from different manufactures and have different platform so that it could cause double waste and loss of recourse. For making up for it, I suggest the NMEA multiplexer embodiment, which could independently move by reliable process and high performance single hardware module, improve the memory efficiency of module by designing the optimized Queue, and keep having reliability for realtime communication among the equipment such as main input sensor equipment Gyrocompass, Echo-sound, and GPS.