• Title/Summary/Keyword: Waste Combustion

Search Result 348, Processing Time 0.032 seconds

A Development of Combustion Model for the Investigation of the Waste Bed Combustion Characteristics in a Waste Incinerator (소각로내의 폐기물층 연소특성 파악을 위한 연소모델 개발)

  • 전영남;김승호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.427-436
    • /
    • 2003
  • This study is to establish a waste bed combustion model that can be available to assist the design of incinerators for efficient operation control of municipal waste incinerators. An unsteady one -dimensional bed combustion modeling was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids in the waste bed combustion phenomena. The combustion characteristics and the properties of the combustion gas released from the bed were investigated by using a developed model. Besides, a sub-model which predicts the formation and destruction of nitrogen oxides in the waste bed was also developed as a post-processor for the waste combustion model. It is found that the reduction rate of nitrogen oxides is enhanced in the char layer.

Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator (폐기물 층 연소와 노내 유동 해석)

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF

Pretreatment Effect of Waste Automotive Catalysts for VOCs Combustion (VOCs 연소를 위한 자동차 폐촉매의 전처리 효과)

  • 문정선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • For a characterization of the pretreated waste automotive catalyst the following analysis techniques were applied : EA(Elemental Analysis) BET(Brunaure-Emmett-Teller) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry). The combustion activity of waste automotive catalyst was investigated for methanol acetaldehyde and toluene as model VOCs in a fixed bed reactor. carbon deposit amount was decreased with increasing catalyst showed a good catalytic activity for VOCs combustion at 40$0^{\circ}C$. Catalytic activity for methanol acetaldehyde and toluence combustion was very excellent and decreased with mileage. The catalytic activity of a waste automotive catalyst for methanol combustion increased after acid treatment. The acid effect of catalytic activity was summarized as follows: HNO3>HCI>H2SO4>CH3COOH. The waste automotive catalyst regenerated by the pretreatment method might have a excellent catalytic activity for VOCs combustion.

  • PDF

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.

An Evaluation Study on Combustion and Thermal Flow Characteristics of G+R Type Incinerator (G+R 타입 소각연소로의 연소 및 열유동 특성평가 연구)

  • Shin, Dong-Hoon;Shin, Dong-Hoon;Baek, Ik-Hyun;Jung, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.111-117
    • /
    • 2003
  • The present study discusses about the combustion and thermal flow characteristics of a G+R type incinerator, which is under construction for MAPO Incineration system, to evaluate the effects of various operating and design parameters. A bed combustion model is developed to simulate the waste bed combustion on the stoker. The effects of waste composition and primary air distribution are estimated. The results of the waste bed combustion model is applied to CFD(computational fluid dynamics) simulation, which simulates the detail of the thermal flow in the combustion chamber. The effects of bypass damper opening ratio, primary air distribution, and secondary air jet configuration are discussed.

  • PDF

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF

Combustion Characteristics of E.V.A., Rubber Waste Treatment by Fixed-Bed Incinerator. (E.V.A., 고무폐기물 소각에 따른 폐가스 처리의 연구)

  • Bae, Byung-Hoon;Jang, Seong-Ho;Lim, Gyoung-Teck
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.221-227
    • /
    • 1996
  • The objectives of this study are to examine combustion characteristics of E.V.A. and rubber wastes by fixed-bed incinerator, The results are as follows. Combustion temperature with time rises rapidly, and mass of E.V.A. reduces at short time in E.V.A. combustion. In variation of air-fuel ratio (m), ice ideal values of m of E.V.A. and rubber are 2.5, 1.5 respectively. Mixed-waste combustion is more economic than single E.V.A. combustion, because we can get high combustion efficiency (94.0~99.0%) at 2.0 air-fuel ratio of mixed-waste combustion. Removal efficiencies of SO2 at cooling tower are about 20%. The combustion efficiencies of rubber are over 98.0% according to the experimental conditions.

  • PDF

Combustion and Emission Characteristics of High Calorific Industrial Waste Burned in a Small-scale Incinerator (고 발열량 산업폐기물을 처리하는 소형 소각로의 소각 및 배출 특성)

  • Lee, Gyo-Woo;Lee, Sung-Jun;Kim, Byung-Hwa;Lee, Seung-Woo;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments on burning process of the industrial wastes were performed on a nozzle-type grate in the industrial waste incinerator with a capacity of 160 kilograms per hour. The temporal variations of temperatures and concentrations of the exhaust gas were measured and analyzed. The synthetic leather waste with the moisture content less than 2% was used. The experimental results show that the CO concentration in the exhaust gas exceeds the limit, 600 ppm, and the gas temperature fluctuates too much when 8 kg of waste was supplied every 3 minutes, equivalent to the capacity of 160kg per hour. That is a typical burning mode of this high-calorific industrial waste. When the smaller unit waste input, 6kg per every 2 min 15 seconds was supplied, we could reduce the fluctuations of the furnace temperature and improve the exhaust emissions, especially the CO concentration.

  • PDF

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

Combustion Characteristics of Wood Materials (1) (Mass Reduction and Ignition Delay) (목재의 연소특성(1) (질량감소와 착화지연))

  • Kim, Chun-Jung
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1999
  • Combustion characteristics of the wood chips(balsa chips) were experimentally investigated with respect to the thermal recycle system of the urban waste. The urban waste contains plastics, vegetable and wood materials. Wood was chosen as an example of the one of the component of urban dust. A small wood chip was burned in a electric furnace by the micro-electric balance. The mass reduction rate was normalized by the initial mass of test piece and the time of volatile combustion end. When the mass of the wood chips(balsa chips) was larger than 0.5g, the combustion similarity was found on the normalized mass reduction rate.

  • PDF