• Title/Summary/Keyword: Waste Activated Sludge

Search Result 149, Processing Time 0.028 seconds

The effect of microwave irradiation on the acidogenesis of waste activated sludge

  • Park, Byeong-Cheol;An, Jong-Hwa;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.128-131
    • /
    • 2003
  • The effect of microwave irradiation on waste activated sludge was investigated in order to improve solubilization. a different levels of microwave irradiation time were varied within a range from 1 min to 15 min. When WAS was pretreated at 1, 3, 5, 7, and 15 min, the SCOD concentration increased according to microwave irradiation time. A simple batch procedure was used to measure the VFA potential, i.e. the amount of VFA that can be formed through digestion of organic constituent in sludge. At equilibrium point, TVFA in the case of 1, 3, 5, 7 and 15 min microwaved sludges was 8%, 122%, 243%, 279% and 232% higher than that in the case of raw sludge, respectively.

  • PDF

Effect of Sonification on the Ananerobic Digestion of Waste Activated Sludge(I) -Disintegration of Waste Activated Sludge Using Ultrasonic and Alkaline Pre-treatments- (초음파가 폐활성 슬러지의 혐기성 소화에 미치는 영향(I) -초음파 및 알칼리 전처리를 이용한 폐활성 슬러지의 가용화-)

  • Han, Sun-Kee;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.96-102
    • /
    • 2009
  • The effect of ultrasonic and alkaline pre-treatments on waste activated sludge (WAS) disintegration was investigated for improved anaerobic digestion. As WAS was treated by either methods, longer capillary suction time (CST) was required due to the break-up of cell walls, and its supernatant demonstrated increase in soluble chemical oxygen demand (SCOD), protein content and turbidity. Ultrasonic process combined with alkaline pre-treatment demonstrated higher SCOD and protein content in the supernatant as compared with ultrasonic pre-treatment only. However, the degree of disintegration (DDCOD) of WAS decreased with increasing solid concentration as both WAS disintegration methods employed simultaneously.

  • PDF

대사열의 발생을 이용한 활성슬러지의 활성 측정

  • Park, Sun-Eung;Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.398-401
    • /
    • 2000
  • A device to measure the temperature difference between the supernatant and the sediment blanket in the course of SV30 measurement in processing of activated sludge process. The temperature elevation in the sludge sediment represent the metabolic heat production by the microorganisms and can be an indicator for the capability of waste treatment. The utilities of the device for the analysis of activated sludge process were demonstrated in this report.

  • PDF

Biosorption and Flotation of Lead and Chromium using Waste Activated Sludge (폐 활성슬러지를 이용한 납과 크롬의 생체흡착 및 부상)

  • Lee, Chang-Han
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.444-450
    • /
    • 2009
  • We have investigated biosorption kinetics and equilibrium of $Pb^2+$ and $Cr^2+$ using waste sludge, and separation efficiency of waste sludge by dissolved air flotation was evaluated in the various A/S ratio. The biosorption capacity and contact time were shown as a simulation of biosorption equilibrium and kinetics models. Biosorption equilibrium of the $Pb^2+$ and $Cr^2+$ onto the waste sludge could be fitted by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan equation. The kinetics could be fitted by a pseudo-second-order rate equation more than a pseudo-first-order rate equation. The separation efficiency of waste sludge using DAF was kept above 90%.

Kinetic Evaluation of Methane Fermentation of Thermally Disintegrated Wastewater Sludge (열처리한 하수슬러지 메탄발효의 동력학적 해석)

  • Park, Ki Young;Lee, Jae Woo;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.927-933
    • /
    • 2007
  • Waste activated sludge (WAS) was thermally pretreated to enhance hydrolysis and ultimately methane yield. Batch and semi-continuous anaerobic digestion were conducted to evaluate the performance of methane fermentation of the hydrolyzed sludge and to investigate the kinetics of sludge fermentation. Thermal pretreatment remarkably enhanced digestion performances particularly the methane fermentation with three times more methane production than before the pretreatment. Gas production and kinetic parameters in the semi-continuous anaerobic digestion were estimated using Chen Hashimoto model. The model simulation fitted well the experimental results and the model was shown to be suitable for evaluating the effects of disintegration of WAS in anaerobic digestion. Three parameters ($B_o$, K, and ${\mu}_m$) determined by model simulation were $0.0807L-CH_4/g-VS$, 0.453 and $0.154d^{-1}$ for control sludge, and $0.253L-CH_4/g-VS$, 0.835 and $0.218d^{-1}$ for thermally pretreated sludge, respectively.

Waste Activated Sludge for Start-up Seed of Thermophilic Anaerobic Digestion (고온 혐기성 소화공정의 start-up seed로서의 호기성 폐 활성슬러지 이용가능성 연구)

  • Kim, Moonil;Shin, Kyuchul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2005
  • Since there are very limited numbers of thermophilic anaerobic digesters being operated, it is often difficult to start up a new one using sludge from an existing reactor as a seed. However, for obvious reasons it seems few attempts have been made to compare the start-up performance of thermophilic anaerobic digestion using different sources of seed sludges. The purpose of this study was to evaluate the start-up performance of anaerobic digestion using aerobic Waste Activated Sludge (WAS) from a plant and mesophilic Anaerobic Digested Sludge (ADS) as the seed source at both mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures. In this study, two experiments were conducted. First, thermophilic anaerobic reactors were seeded with WAS (VSS = 4,400 mg/L) and ADS (VSS = 14,500 mg/L) to investigate start-up performance with a feed of acetate as well as propionate. The results show that WAS started to produce $CH_4$ soon after acetate feeding without a lag time, while ADS had a lag time of 10 days. When the feed was changed to propionate, WAS removed propionate down to below the detection limit of 10 mg/L, while ADS removed little propionate and produced little $CH_4$. Second, in order to further compare the methanogenic activity of WAS and ADS, both mesophilic and thermophilic reactors were operated. WAS acclimated to anaerobic conditions shortly and after acclimating it produced more $CH_4$ than ADS. WAS at mesophilic temperature biodegraded acetate at the same rate as for thermophilic. However WAS at mesophilic temperature biodegraded propionate at a much faster rate than at thermophilic. WAS as the seed source of anaerobic digestion resulted in much better performance than ADS at both mesophilic and thermophilic temperatures for both acetate and propionate metabolism.

Application of a Thermophilic Aerobic Digestion Process to Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Eom, Yong-Suk;Oh, Byung-Keun;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.570-576
    • /
    • 2001
  • Thermophilic aerobic bacteria were applied in the degradation of industrial waste activated sludge (WAS) on a laboratory scale expreiment. The performance of digestion was estimated by measuring the reduction of total suspended solids (TSS), dissolved organic carbon (DOC), and total organic carbon (TOC). Among three strains of Bacillus stearothermophilus and three strains of Thermus species, B. stearothemophilus ATCC 31197 showed the best overall efficiency level for the degradation of industrial WAS, which was collected from a wastewater treatment plant in an oil refinery factory. Industrial WAS coul be successfully detraded in a batch digestion with ATCC 31197. The stability of the digestion process with ATCC 31197 was successfully verified by semi-continuous (fill-and-draw) digestion experiment. From the results of this study, it was shown that the thermophilic aerobic digestion process with ATCC 31197 could efficiently be applied to the degradation of industrial WAS.

  • PDF

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

Recovery of phosphorus from waste activated sludge by microwave heating and MAP crystallization (잉여 슬러지의 마이크로웨이브 가온과 MAP 결정화를 이용한 인산염 회수)

  • Ahn, Johwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Phosphorus is a vital resource for sustaining agriculture and nutrition, but a limited non-renewable resource. Thus, the recovery of phosphorus from waste activated sludge(WAS) was attempted by microwave heating and magnesium ammonium phosphorus(MAP) crystallization. Polyphosphate-accumulating organisms(PAOs) in WAS release phosphate from the cell when they are exposed to high temperature environments. Microwave heating caused phosphorus and ammonia to release from WAS. The amount was increased with increasing temperature, showing that 88.5% of polyphosphate present in the cells were released in the form of phosphate at $80^{\circ}C$. A similar result was also observed in the release of ammonia. On the other hand, both phosphorus and ammonia were crystallized with magnesium, and then was harvested as MAP. Phosphorus recovery rate reached almost 97.8%, but the ammonia was about 13.4%. These results cleary indicate that phosphorus could be recovered from WAS using a physiological trait of PAOs. Heavy metal analyses also show that the MAP crystal is useful and safe as a phosphorus fertilizer.

The evaluation of T-P removal and dewaterability under the operation change in KIDEA process (-기술정보- 연속유입 KIDEA에서 공정변화에 따른 인제거 및 탈수 함수율 상관관계)

  • Yeon, seung jun;Her, hee seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.179-182
    • /
    • 2008
  • The KIDEA process, occurred in single reactor, is operated by three consequential steps, i.e., aerobic, settling, and discharge while introducing wastewater into the bottom of reactor continuously. It could accomplish biological oxidation (BOD), nitrification, denitrification (T-N), phosphate removal (T-P), and solid separation (SS) through the operational mode mentioned. Especially, this system has removed the T-P by wasting certain amount of sludge at the end of aeration phase during 5~10 minutes and not returned the activated sludge into the reactor, that is, no RAS (Return Activated Sludge). All running mode and instrumentation were controlled by the PLC equipment automatically. In this study, therefore, we have evaluated T-P removal efficiency and moisture content (MC) performance under the different excess sludge wasting mode. T-P track study and MC with TS concentration were analyzed during aerobic and settling phase. It has revealed that there was no significant difference of released T-P concentration between the first case which waste the sludge at the end of aerobic phase (0.2mg/L) and the second case which waste the sludge at 40 min of settling phase (0.25mg/L). Also, dewatering duration and MC have decreased 1.7% when TS concentration was increased from 0.31% to 0.5% during aerobic condition. Hence, it has concluded the system performance was less influenced by the operation time change of PLC program.