• Title/Summary/Keyword: Warping Deformation

Search Result 75, Processing Time 0.022 seconds

트로코이달 헬리컬 기어의 비정상상태 유한요소해석

  • ;;Yong Bok Park;Dong Yol Yang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.37-46
    • /
    • 1994
  • In metal forming, there ar problems with recurrent geometric characteristics and without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. The present study deals with nonsteady-state three-dimensional finite element analysis for extrusion of a trocoidal helical gear through a curved die. The boundary-directed remeshing scheme based on the modular remeshing technique is developed to reduce the errors arising in fitting old and new mesh systems. The computed extrusion pressure in reaching the near steady-state loading stage is compared with the results of the experiment and the steady-state analysis. The three-dimensional deformed pattern involving warping at the extruded end due to torsional deformation mode is demonstrated.

  • PDF

Design Optimization for Minimizing Warpage in Injection Molding Parts with Numerical Noise (수치적 노이즈가 존재하는 사출 성형품 휨의 최적설계)

  • Park, Changhyun;Kim, Sungryong;Choi, Donghun;Pyo, Byunggi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1445-1454
    • /
    • 2005
  • In order to minimize warping deformation which is an essential factor in the failure of injection molding parts, this study proposes an optimization design method fer determining design variables of injection molding parts. First, using a commercial package program for injection molding analysis, namely, Computer Aided Plastics Application(CAPA), we investigate the effects of parameters of injection molding process. Next, an optimum design process is established by interfacing CAPA to PQRSM embedded in EMD10S, a design framework developed by the conte. of innovative Design Optimization Technology(iDOT). PQRSM is a very efficient sequential approximate optimization algorithm. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the results of the optimum design is better than those of the initial design. It is believed that the proposed methodology can be applied to other injection molding design applications.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

A C0 Finite Element of Thin-Walled Open Beams Including Warping Shear Deformation (? 전단변경(剪斷變形)을 고려한 비대칭(非對稱) 박벽단면(薄壁斷面)보의 C0 유한요소(有限要素))

  • Back, Sung Yong;Cho, Hyun Yung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.291-298
    • /
    • 1994
  • This paper presents a new stiffness matrix for the analysis of arbitrary thin-walled open beams in warp-restrained torsion. The element accounts for both flexural and warping torsional effects. To eliminate the ad hoc introduction of St. Venant stiffness in this $C^0$ element, the virtual work equation based on an orthogonal Cartesian coordinate system is used. The effectiveness of the derived block stiffness is addressed. The transformation matrix between two different reference systems is also shown. Numerical examples using the proposed matrix are compared with the classical solutions or other previous results in the literature.

  • PDF

Design of Longitudinal prestress of precast decks in twin-girder continuous composite bridges (강박스거더 교량의 프레임 형식 중간다이아프램의 설계)

  • Yoon, Dong Yong;An, Sung Hyun;Lee, Sung Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.515-524
    • /
    • 2006
  • Cross-sectional distortions take place when steel box girders a re subjected to torsional moment, as a consequence of which distortional warping stresses are necessarily developed. Additional normal stresses due to the distortion are should be included at the design stage. The relative magnitude with respect to the maximum bending stress are kept less than the specific values, i.e., at 5~10%, by properly spaced intermediate diaphragms that could prevent the distortional deformation of the box girder. However, current design equations for the stiffness of intermediate diaphragms were derived based on BEF. In this study, the area required by the intermediate diaphragm members are investigated through three-dimensional finite element analyses. The results of the analyses indicate that the current equations give to conservative values for the intermediate diaphragm of box girder bridges. Finally, an improved equation for the area of the intermediate diaphragm is derived from a regression analysis from the finite element analysis results.

Analytical Simulation of the Seismic Response of a High-Rise RC Building Model (고층 철근콘크리트 건축구조모델의 지진응답에 대한 해석적 모사)

  • Lee, Han-Seon;Lee, Jeong-Jae;Jung, Dong-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • A series of shaking table tests were conducted on a 1:12 scale model using scaled Taft N21E earthquake records to investigate the seismic performance of a 17-story high-rise reinforced concrete building structure with a high degree of torsional eccentricity and soft-story irregularities in the bottom two stories. The main characteristics of the behaviors were: (1) a sudden change of the predominant vibration mode from the mode of translation and torsion to the torsional mode after the flexible side underwent a substantial inelastic deformation; (2) an abrupt increase in the torsional stiffness during this change of modes; (3) a warping behavior of the wall in the torsional mode; and (4) a unilateral overturning moment in the transverse direction to the table excitations. In this study, efforts were made to simulate the above characteristics using a nonlinear analysis program, Perform3D. The advantages and limitations are presented with the nonlinear models available in this software, as they are related to the correlation between analysis and test results.

Flexural Analysis of Laminated Composite T-Beams (적층복합 T형 보의 휨 해석)

  • Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • A shear-flexible beam element is presented for the flexural analysis of laminated composite T-beams with arbitrary lay-ups. Based on the first-order shear deformable beam theory, the derived element takes into account warping shear deformation and all coupling coming from material anisotropy. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements with seven degree-of-freedom per node are developed to solve governing equations. To demonstrate the versatility and accuracy of the beam element formulated, numerical results are performed for symmetric and anti-symmetric angle-ply composite T-beams under the uniformly distributed and concentrated load. The effects of fiber angle and shear deformation are investigated for different laminated stacking sequence. The quadratic and cubic elements are shown to be applicable to the flexural analysis of composite T-beams.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

On the free vibration behavior of carbon nanotube reinforced nanocomposite shells: A novel integral higher order shear theory approach

  • Mohammed Houssem Eddine Guerine;Zakaria Belabed;Abdelouahed Tounsi;Sherain M.Y. Mohamed;Saad Althobaiti;Mahmoud M. Selim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • This paper formulates a new integral shear deformation shell theory to investigate the free vibration response of carbon nanotube (CNT) reinforced structures with only four independent variables, unlike existing shell theories, which invariably and implicitly induce a host of unknowns. This approach guarantees traction-free boundary conditions without shear correction factors, using a non-polynomial hyperbolic warping function for transverse shear deformation and stress. By introducing undetermined integral terms, it will be possible to derive the motion equations with a low order of differentiation, which can facilitate a closed-form solution in conjunction with Navier's procedure. The mechanical properties of the CNT reinforcements are modeled to vary smoothly and gradually through the thickness coordinate, exhibiting different distribution patterns. A comparison study is performed to prove the efficacy of the formulated shell theory via obtained results from existing literature. Further numerical investigations are current and comprehensive in detailing the effects of CNT distribution patterns, volume fractions, and geometrical configurations on the fundamental frequencies of CNT-reinforced nanocomposite shells present here. The current shell theory is assumed to serve as a potent conceptual framework for designing reinforced structures and assessing their mechanical behavior.