• Title/Summary/Keyword: Warping Criterion

Search Result 4, Processing Time 0.018 seconds

Automatic Generation of Tetrahedral Meshes from General Sections (일반 단면으로부터 사면체 요소망의 자동생성)

  • Chae, Su-Won;Lee, Gyu-Min;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.196-205
    • /
    • 2000
  • Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (MR1) and some ultrasound techniques make it possible to obtain cross sections of human body or mechanical parts. In CAD system, a series of sectional surfaces can also be obtained from solid models of 3D objects. In this paper we introduce a tetrahedral meshing algorithm from these series of general sections using basic operators. In this scheme. general sections of three-dimensional object are triangulated first and side surfaces between two sections are triangulated by the use of tiling process. Finally tetrahedral meshing process is performed on each layer of 3D objects, which is composed of two general sections and one side surface.

Thermal Stability Analysis of 2-D Spacecraft Appendage (위성체 2-D 구조물의 열 안정성 해석)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

Thermal Flutter Analysis of Spacecraft Solar Array Structure (위성체 태양전지판 구조물의 열적 플러터 해석)

  • Yoon, Il-Soung;Kang, Ho-Shik;Jeong, Nam-Heui;Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.26-32
    • /
    • 2005
  • In this paper, the vibration response of the spacecraft solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

Binary Tree Architecture Design for Support Vector Machine Using Dynamic Time Warping (DTW를 이용한 SVM 기반 이진트리 구조 설계)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Seung Woo;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.201-208
    • /
    • 2014
  • In this paper, we propose the classifier structure design algorithm using DTW. Proposed algorithm uses DTW result to design the binary tree architecture based on the SVM which classify the multi-class data. Design the binary tree architecture for Support Vector Machine(SVM-BTA) using the threshold criterion calculated by the sum columns in square matrix which components are the reference data from each class. For comparison the performance of the proposed algorithm, compare the results of classifiers which binary tree structure are designed based on database and k-means algorithm. The data used for classification is 333 signals from 18 classes of underwater transient noise. The proposed classifier has been improved classification performance compared with classifier designed by database system, and probability of detection for non-biological transient signal has improved compare with classifiers using k-means algorithm. The proposed SVM-BTA classified 68.77% of biological sound(BO), 92.86% chain(CHAN) the mechanical sound, and 100% of the 6 kinds of the other classes.