• Title/Summary/Keyword: Warpage

Search Result 274, Processing Time 0.023 seconds

Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar (집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석)

  • Han, Yeonjung;Chang, Yoon-Seong;Park, Yonggun;Jeong, Gi-Young;Hong, Jung-Pyo;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.535-543
    • /
    • 2013
  • The objective of this study was to analyse the residual stress in Larix kaempferi board during and after kiln-drying. The boards were primarily intended for using as laminar of cross laminated timber (CLT). In this study, the equivalence of moisture content by equalizing treatment was proved and reduction of residual stress by conditioning treatment was quantified. Prong test and slice test were carried out to analyse the residual stress in wood during drying. Transverse casehardening was measured immediately after making prong sample. Residual stress of four parts in wood from surface to center was analyzed quantitatively based on elastic deformation after just cutting slices from board. Tensile stress and compressive stress on the surface of board during drying did not exceed 2.2 MPa when boards were dried by kiln-drying schedule of T10-C4 and T12-D5. Because the tensile strength and compressive strength of transverse direction of Larix kaempferi lumber are 2.65 MPa and 4.60 MPa, application of more severe drying schedule can be recommended. Cup and twist were reduced by about 40% by equalizing and conditioning treatments after drying.

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

Seasoning of Commercial Wood Using Solar Energy (태양에너지를 이용한 유용목재의 건조)

  • Jung, Hee-Suk;Lee, Hyoung-Woo;Lee, Nam-Ho;Lee, Sang-Bong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.10-39
    • /
    • 1988
  • This study investigated the temperatures and relative humidities in the semi-greenhouse type solar dryer with a black rock-bed heat storage and without heat storage and outdoor temperature and relative humidity at 9 a.m. and 2 p.m.. A comparison was made of the drying rates, final moisture contents, moisture content distributions, casehardening stresses, drying defects, volumetric shrinkage of dried lumber for solar- and air-drying from the green condition of mixtures of Douglas-fir, lauan, taun, oak and sycamore 25mm- and 50 mm-thick lumber during the same period for four seasons, and heat efficiencies for solar dryer with and without the heat storage for saving of heat energy and the cost of lumber drying using the solar energy. The results from this study were summarized as follows: I. The mean weekly temperatures in the solar dryers were 3 to $6^{\circ}C$ at 9 a.m. and 9 to $13^{\circ}C$ at 2 p.m. higher than mean outdoor temperature during all the drying period. 2. The mean weekly relative humidities in the solar dryers were about 1 to 19% at 9 a.m. higher than the outdoor relative humidity. and the difference between indoor and outdoor relative humidity in the morning was greater than in the afternoon. 3. The temperatures and relative humidities in the solar dryer with and without the heat storage were nearly same. 4. The overall solar insolation during the spring months was highest and then was greater in the order of summer, atumm, and winter month. S. The initial rate of solar drying was more rapid than that of air drying. As moisture content decreased, solar drying rate became more rapid than that of air drying. The rates of solar drying with and without heat storage were nearly same. The drying rate of Douglas-fir was fastest and then faster in the order of sycamore, lauan, taun and oak. and the faster drying rate of species, the smaller differences of drying rates between thicknesses of lumber. The drying rates were fastest in the summer and slowest in the winter. The rates of solar drying during the spring were more slowly in the early stage and faster in the later stage than those during the autumn. 6. The final moisture contents were above 15% for 25mm-thick air dried and about 10% for solar dried lumber, but the mean final MCs for 50mm-thick lumber were much higher than those of thin lumber. The differences of final MC between upper and lower course of pile for solar drying were greater than those of pile for air drying. The differences of moisture content between the shell and the core of air dried lumbers were greater than those of solar dried lumber, smallest in the drying during summer and greatest in the drying during winter among seasons. 7. Casehardening stresses of 25mm- and 50mm-thick dried lumber were slight, casehardening stress of solar dried lumber was severer than that of air dried lumber and was similar between solar dried lumber with and without heat storage, Casehardening stresses of lumber dried during spring were slightest and then slighter in the order of summer, autumn, and winter. Casehardening stresses of Douglas -fir, sycamore and lauan were slight, comparing with those of taun and oak. 8. Maximum initial checks of 25mm-thick lumber occurred above and below fiber saturation point and those of 50mm-thick lumber occurred in the higher moisture content than thin lumber. As the moisture content decreased, most of checks were closed and didn't show distinct difference of the degree of checks among drying methods. The degree of checks were very slight in case of Douglas-fir and lauan, and severe in case of taun and oak. The degree of checks for 50mm-thick lumber were severer than those for 25mm-thick lumber. 9. The degree of warpage showed severe in case of oak and sycamore lumber, but no warping was found in case of Douglas-fir, lauan and taun. 10. The volumetric shrinkages of taun and oak were large and medium in case of Douglas-fir, lauan and sycamore. 11. Heat efficiencies of solar dryer with heat storage were 6.9% during spring, 7.7% during summer, 12.1% during autumn and 4.1% during winter season. Heat efficiency of solar dryer with heat storage was slightly greater than that of without heat storage. As moisture content of lumber decreased, heat efficiency decreased.

  • PDF