• Title/Summary/Keyword: Warm-Season Turfgrass

Search Result 52, Processing Time 0.025 seconds

Evaluation of Host Resistance of 18 Warm-Season and 20 Cool-Season Turfgrass Species and Cultivars to Spodoptera depravata(Butler) (잔디밤나방에 대한 난지형 잔디와 한지형 잔디의 내충성 평가)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.74-81
    • /
    • 2003
  • The need for insect and mite resistant turfgrass cultivars arose because of problems associated with pesticide use. Representative cultivars and genotypes of 18 warm-season turfgrass [Zoysia japonica Steud., Z. japonica${\times}$Z. metrella hybrids, Z. japonica${\times}$Z. tenuifotia hybrids, Z. matrella (L.) Merr., Cynodon dactylon (L.) Pers., C. dactylon${\times}$C. transvallensis hybrids, Paspalum notatum Flugge., P. vaginatum Swartz., Stenotaphrum secundatum (Walt.) Kuntze, Eremochloa ophiuroides (Munro.) and Buchloe dactyloides (Nutt.) Engelm.] and 20 cool-season turfgrasses [Poa pratensis L., Festuca arundinacea Schreb., F. rubra L., F. rubra var. commutata Gaud., F. ovina var. duriuscula L. Koch. Agrostis tenuis Sibth., A. palustris Huds., and Latium perenne L.] were evaluated for host resistance to feeding by the Spodoptera depravata (Butler) in the laboratory. Two experiments were set up in the laboratory using 8.5cm diameter${\times}$4.0cm deep plastic petri dishes as larvae feeding chambers. In experiment 1, one neonate larvae were place on the grass in each dish and the dishes were arranged with 5 replicates each within an environmental chamber maintained at $25^{\circ}C$ and 15h light: 9h dark Larval survival and larval weights at 7d and 14d, pupal weights, and days to pupation were compared among turfgrasses. In Experiment 2, 4cm sections of all grasses were oriented equidistant from each other in a pattern resembling the spokes of a wheel. Five one neonate larvae were introduced to the center of each dish. Dishes were immediately placed in an environmental chamber held at $25^{\circ}C$, 15h light: 9h dark Larvae were allowed to feed for 24h. Damage was rated from 0(no damage) to 9(completely consumed) were made for eachturfgrass. Resistance as antibiosis (high mortality, slowed growth, and least preference) was identified in Z. japonica${\times}$Z. tenuifolia hybirids ‘Emerald’, Z. japonica${\times}$Z. metrella hybirds ‘Miyako’ and Eremochloa ophiuroides (Munro.). Cool-season turfgrasses tested were susceptible to feeding by Spodoptera depravata (Butler).

Comparative Drought Resistances among Eleven Warm-Season Turfgrasses and Associated Plant Parameters

  • Kim, Ki Sun;Beard, James B.
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.239-245
    • /
    • 2018
  • Comparative drought resistances of 11 perennial warm-season turfgrasses were evaluated in the field after withholding irrigation for 48 days in summer I and 57 days in summer II. There were significant variations among the grasses in their drought resistances. From two years study of field shoot recovery from drought stress, the relative rankings among the 11 warm-season turfgrasses was as follows. 'Arizona Common' and 'Texturf 10' bermudagrasses [Cynodon dactylon (L.) Pers.], 'Tifgreen' hybrid bermudagrass [C. dactylon (L.) Pers. ${\times}$ C. transvaalensis Davy], and 'Georgia Common' centipedegrass [Eremochloa ophiuroides (Munro.) Mack.] possessed good drought resistances, whereas 'Texas Common' St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] and 'Tifway' hybrid bermudagrass [Cyndon dactylon (L.) Pers ${\times}$ C. transvaalensis Davy] possessed poor drought resistances. 'Texas Common' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], 'Pensacola' bahiagrass (Paspalum notatum Flugge.), and 'Adalayd' seashore paspalum (Paspalum vaginatum Swartz), 'Meyer' zoysiagrass (Zoysia japonica Steud.), 'Emerald' zoysiagrass (Z. japonica Steud. ${\times}$ Z. tenuifolia Willd. ex Trin.) were found to rank intermediate. Visual leaf firing showed the highest correlation (r=-0.84) to shoot recovery from drought stress. Visual leaf rolling (r=-0.59) and canopy-air temperature differential (r=-0.64) also showed very significant correlations, whereas leaf water potential (r=0.54) showed relatively lower correlation.

Effects of Cool-Season Turfgrass Overseeding onto Zoysiagrass (들잔디 위의 한지형 잔디 덧파종 효과)

  • Shim, Sang-Ryul;Jeong, Dae-Young;Ahn, Byung-Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.85-93
    • /
    • 2004
  • This study was carried out to find out the effect of cool-season turfgrass overseeding onto zoysiagrass(Zoysia japonica L.) for extending green color and solving traffic problem during dormant periods. Overseeding rates of cool-season turfgrasses were $10g/m^2$ of Kentucky bluegrass(KB1), $20g/m^2$of Kentucky b1uegrass(KB2), $60g/m^2$ of perennial ryegrass(PR), $80g/m^2$ of Tall fescue(TF), and $10g/m^2$ of Kentucky bluegrass + $10g/m^2$ of perennial ryegrass mixture(KB+PR) onto 2m${\times}$2m(width${\times}$length) zoysiagrass plots with 3 replications.1 to 9-sca1e of visual quality and visual color were measured after treatment, Consequently cool-season turfgrass overseeding gave a good performances of extending the green periods and enhancing the turf grass quality. KB1 and KB2 were found to be excellent performances for visual quality and visual color compared to PR, TF, KB+PR and control. KB2 showed better turf performances than KB1 within Kentucky bluegrass overseedings. Turfgrass color was kept up for 10 months by overseeding of cool-season turfgrasses(KB1, KB2, PR, TP, KB+PR) compared to about 5~6 months by zoysiagrass(Control). The visual quality and visual color of PR and TF showed good performances during a green-up period of spring, but decreasing tendencies through the summer.Percent diseases data revealed also higher ratings for PR and TF compared to for KB1 and KB2.

Growth Characteristic of Warm-season Turfgrass in Saemangeum Reclaimed Land (새만금간척지에서 난지형 잔디의 생육 특성)

  • Bae, Eun-Ji;Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Choi, Su-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • This study was conducted to investigate the growth characteristics of warm-season turfgrasses and to find out suitable turfgrass species on Saemangeum reclaimed land. Twenty native zoysiagrass(Zoysia sinica, Z. matrella, Z. japonica, Medium-leaf type zoysiagrass(hybrid zoysiagrass)) and bermudagrass(Cynodon dactylon) collected from Korea were used in this study. Total stolon length and the number of stolon per square meter, relative growth rate of shoot and stolon, and coverage rate were analyzed for 2 year. C. dactylon showed not only the most growth response with high relative growth rate of shoot and stolon, which were 19.9% and 66.3%, but also resulted in higher level of turf visual quality compared to others. Whereas Z. japonica showed the least growth response with low relative growth rate of shoot and stolon, which were 2.4% and 0.7%. Although all warm-season turfgrasses took root and grew up well, there were different growth rates between the interspecies. Z. sinica 'Z2034', Z. matrella 'Z4091', Z. japonica 'Z1064', Medium-leaf type zoysiagrass 'ZN6019' and C. dactylon 'BN7014' were the greatest growth rate of shoot and stolon. These results will be useful for selecting salt tolerant breeding lines and also used to develop a turfgrass cultivar with strong salinity tolerance through continuous monitoring.

Late Fall Nitrogen Application and Turf Cover for Zoysiagrass (Zoysia japonica) Spring Green-up

  • Oh, Jun-Suk;Lee, Yu-Jin;Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The use of zoysiagrass (Zoysia japonica Steud.) in the transition zone is limited because of a lack of cold hardiness although zoysiagrass has many advantages compared to other warm-season and cool-season grasses. Late-fall N fertilization is often applied for darker green color of turfgrass in early spring and more extensive root growth without rapid top growth. The objective of the study was to evaluate the effects of late fall N application and turf cover for zoysiagrass spring green-up. Clear polyvinyl chloride (PVC) film was used for turf cover. The amount of N applied were 5 and $10g\;N\;m^{-2}$ for the low and high N rate treatments, respectively. Covered zoysiagrass had greater turfgrass color and quality in early spring than non-covered zoysiagrass. The high N rate had 0.6 to 2.3 greater turfgrass quality than the low N rate on 7 of 9 rating dates. Slow-release N as late fall fertilization is more effective for turfgrass color and quality than fast-release N in spring. Turf cover could reduce the period of yellow zoysiagrass, and the earlier time of spring green-up could be advanced by increasing turfgrass quality and growth of zoysiagrass.

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

Turfgrass Selection for Soccer Fields - A Simulation of the Inchon 2002 World Cup Stadium - (축구경기장의 잔디초종 선정에 관한 연구 - 2002년 월드컵 인천경기장 모형돔을 대상으로 -)

  • 심상렬;정대영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • This study was conducted to select suitable turfarasses for use at 2002 world cup soccer fields in Korea. A 1/1000 scale Inchon worldcup soccer dome was constructed for this research. Species and seeding rates of cool-season grasses used inside and outside the dome were Kentuck bleugrass 10g/$m^2$ (KB), Kentucky bleugrass 10g/$m^2$+ perennial ryegrass 10g/$m^2$ mixture (KB+PR) and Kentucky bleugrass 6g/$m^2$+tall fescue 14g/$m^2$+ perennial ryegrass 4g/$m^2$ mixture (KB+TF+PR). Warm-season grasses also used in this study were Zoysia japonica 'Anyangjungzii' (ZA) and Zoysia japonica 'Zenith'(ZZ) which were layed as sod. So, total 5 types of grasses were used inside and outside the dome. The rootzone was constructed by the multi-layer method(United States Golf Association method). The plots were designed by randomized block design. Cool-season grasses(KB, KB+PR, KB+TF+PR) were found to be better performers for visual rating and visual color than the zoysiagrasses(ZA, ZZ). There were no significant differences in turf performance within cool-season grasses, while ZA showed better turf performances than ZZ within zoysiagrasses. The green color was maintained for about 10 months in the col-season grasses(KB, KB+PR, KB+TF+PR) compared to about 5~6 months in the zoysiagrasses. Root length and density data revealed higher values for KB, KB+PR and KB+TF+PR compared to ZA and ZZ. Root performance of 22 was better than ZA within zoysiagrasses which was the opposite result of turf performances. There was also no significant difference between U performance inside and outside the dome. However, the decreasing tendency of turf quality inside the dome at the end of the study showed that more proper maintenance technology was needed inside the d[me. It could be concluded by this study that cool-season grasses(KB, KB+PR, KB+TF+PR) were more suitable turfgrasses than waits-season zoysiagrasses(ZA, ZZ) for use at 2002 world cup soccer fields in Korea.

Determination of the Optimum Dose Range for a Mutation Induction of Turfgrasses by a Gamma-Ray (잔디류 돌연변이 유기를 위한 적정 방사선 선량범위의 결정)

  • Lee, Hye-Jung;Lee, Geung-Joo;Kim, Dong-Sub;Kim, Jin-Baek;Ku, Ja-Hyeong;Kang, Si-Yong
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2008
  • This study was conducted to determine the optimum dose ranges for a mutation breeding based on the observations of a seed germination and an early growth in turfgrasses. Three warm season (Zoysiagrass, Bermudagrass, and Seashore paspalum) and four cool season turfgrasses (Kentucky bluegrass, Tall fescue, Perennial ryegrass, and Creeping bentgrass) were used in this study. We investigated the percentage of a seed germination and a seedling growth after irradiating the turfgrass seeds with various doses of gamma-ray (50, 100, 150, 200, 250, 300, 400, and 500 Gy). After 24 h with a gamma irradiation, the seeds were sown on the wet filter paper in a petri dish and maintained for 3 weeks at 30$^{\circ}C$ for the warm season turfgrasses and at 25$^{\circ}C$ for the cool season turfgrasses. Data on a seed germination and a seedling growth with three replications were collected. The percentage of seed germination was decreased with an increase of the gamma-ray dose. Shoot and root growth, and the fresh weight were decreased significantly as the radiation dose was increased. A radiation dose indicating a 50% growth inhibition ($LD_{50}$) with a gamma irradiation was varied among those turfgrass species used, with the highest at about 500 Gy for bermudagrass and the lowest at 100Gy for tall fescue. The optimum dose for a gamma irradiation for a selection of turfgrass mutants was considered to be about 300, 150, 500, 150, 200, 100 and 200 Gy for zoysiagrass, seashore paspalum, bermudagrass, Kentucky bluegrass, perennial ryegrass, tall fescue, and creeping bentgrass, respectively.

A Study on the Seasonal Color Characteristics of Warm Season- and Cool Season-Cover Grasses I. Leaf Color Characteristics of Wild Plants (난지형 및 한지형 지피식물의 엽색변화 특성에 관한 연구 : I. 야초의 엽색변화 특성)

  • Shim, Jai-Sung;Seo, Hyung-Key
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1995
  • This study was conducted from September 1, 1994 to December 12, 1994 to investigate the leaf color characteristics, flowering period and fruit period of Wild plants in Suwon and Taejon area. The results were as follows; 1. By using the chlorophyll meter, the chlorophyll content of Liriope platyphylla, Trifolium repens, Dystaenia takeshimana was 30.0, 22, 2 and 19.0, respectively on December 9, 1994. 2. By leaf color based on KBS standard color number, Liriope piatyphylla, Trifolium repens, Dvstoenia takeshirnana were green till December 9, 1994. 3. The flowers of Aster sea ber, Atractylodes japonica, Allium thunbergii, Liriope platyphylla, Scilla scilloides, Digitaria sanguinalis, Sanguisorba officinalis were persisting till September, and the flowers of Crysanthemum boreale were persisted till November and Allium thunbergii, till October.

  • PDF

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.