• Title/Summary/Keyword: Warm well

Search Result 422, Processing Time 0.034 seconds

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

The Effect of an Aluminum Mold on Densification of Copper Powder Under Warm Pressing (온간금형 압축시 구리 분말의 치밀화에 대한 알루미늄 몰드의 영향)

  • Lee, Sung-Chul;Park, Tae-Uk;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.333-339
    • /
    • 2008
  • Densification behavior of copper powder was investigated to study the effect of an aluminum mold under warm pressing. The low flow stress of an aluminum mold is appropriate to apply hydrostatic stress to powder compacts during compaction under high temperature. The suggested powder metallurgy process is very useful under high temperature since copper powder compacts have higher relative density over axial stress of 100 MPa and show more homogeneity as compared with conventional warm pressing. Elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) for densification behavior under warn pressing by using a metal mold. Finite element results agreed well with experimental data for densification and deformation of copper powder compacts in the mold.

Analysis of Surface Fibers by Wavelet Transform and Subjective Evaluation of Wool Fabrics (웨이블릿 변환을 이용한 모직물의 표면섬유 분석과 주관적 감각 평가)

  • 김동옥;김은애;유신정
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.53-59
    • /
    • 2002
  • The surface fibers on the fabric is one of decisive factors which affects human sensory evaluation as well as heat and moisture transfer characteristics. In this study the length and distribution of surface fibers that are extruded from the fabric surface of the wool/wool blend fabrics (14 wool fabrics and 10 wool blend fabrics) and its contribution to subjective sensory evaluation were investigated. In order to quantify the length and distribution of surface fibers, image analysis and wavelet transform technique were introduced. Instant warm-cool feeling of touch, Q$\_$max/, and contact area were also measured and related to the quantified surface fibers. To figure out the effect of surface characteristics on sensory evaluation, human sensory responses to three adjectives which represent surface characteristics and warm-cool feeling of touch were obtained and analyzed. The relationship between the quantified surface fibers assessed by wavelet energy and both warm-cool reeling of touch, Qmax, and human sensory response were discussed.

  • PDF

A Study on the Ohguktong(吳鞠通)'s Upper Burner[上焦] in "The Sections of Warm Disease(溫病條辨)" (오국통(吳鞠通)의 "온병조변(溫病條辨)"중(中) 상초(上焦)에 관한 연구(硏究))

  • Kim, Young-Doo;Shin, Seung-Yuel;Cho, Kyung-Jong;Lee, Seok-Jae;Keum, Kyung-Soo;Lee, Si-Hyeong
    • Journal of Korean Medical classics
    • /
    • v.21 no.3
    • /
    • pp.177-258
    • /
    • 2008
  • An Epidemic disease is regarded as warm disease by Korean Medicine. Warm disease is highly contagious and shows an unfavorable condition, and that is characteristic of being widely prevalent. Warm disease study cope with this epidemic disease opportunely. In the Myeong[明] and Cheong[淸] Dynasty, warm disease study got into the region of Korean medicine of today and "The Sections of Warm Disease(溫病條辨)" contributed to the cause of the study was really great. "The Sections of Warm Disease" written by Ohguktong(吳鞠通) in the Cheong Dynasty are divided into the three sections of Upper burner[上焦], Middle burner[中焦] and Lower burner[下焦]. Ohguktong, dealing with the contents of Defense-aspect[衛分], Gi-aspect[氣分], Construction-aspect[營分], Blood-aspect[血分], and so forth in all "Sections of Warm Disease", made use of Seopcheonsa(葉天士)'s Defense Gi[衛氣], Construction, and Blood pattern identification with Triple burner[三焦] pattern identification and six channel pattern identification. And he, having a correct understanding of the nature of medicine, suggested in detail that the directions of medicine and described the processing according to method and the method to take medicine. To conclude, Ohguktong(吳鞠通) Tong in "The Sections of Warm Disease" not only formulated the system of the practical theory of warm disease but also solidified the foundation covering warm disease and its treatment as well, He established the new method of treatment and formula related to warm disease and made a definite distinction between cold damage[傷寒] and warm disease[溫病].

  • PDF

Comparative Study on Etiological Cause, Pathogenesis Mechanism of "Shanghanlun" and "Wenbingtiaobian" ("상한론(傷寒論)"과 "온병조변(溫病條辨)"의 병인병기론적 비교 연구)

  • Park, Mi Sun;Kim, Yeong Mok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • We can understand "Shanghanlun(傷寒論)" and "Wenbingtiaobian(溫病條辨)" which are major books on externally contracted diseases well by making a comparative study of their similarities and differences. After studying etiological causes and characteristics of disease, disease pattern, syndrome differentiation, transmutation rules, following conclusions are derived. While cold is an etiological cause of Cold damage and harms Yang qi, heat is an etiological cause of Warm disease and harms Yin qi. Cold damage and Warm disease have something in common in the respect of damage to fluid and humor and Yang qi. Exuberant heat symptom of Yang brightness disease and lesser yin heat transformation pattern have similar damage to fluid and humor as Warm disease does. Warm disease can reach qi collapse syndrome through damage to Yang qi following fluid and humor damage. In the respect of water qi, as Cold damage makes water-dampness retain easily due to cold congealing, dampness-draining diuretic medicinal and warm yang medicinal are used together. As warm disease damages fluid and humor, yin-tonifying medicinal is used and dampness-draining diuretic medicinal can be used in the case of Warm disease with dampness. In the respect of disease pattern, cold syndromes arise mostly by Cold damage except heat syndrome of grater yang disease, chest bind syndrome, stuffiness syndrome, reverting yin disease and yang brightness disease. Warm disease is classified as pure heat syndrome and heat syndrome with bowel excess, damage to yin, qi collapse or damage to blood.

Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea (동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향)

  • Kim, Bong-Chae;Choi, Bok-Kyoung;Kim, Byoung-Nam
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

Evaluation of Solar Collector to Introduce Natural Convection in Water Tank to Obtain Warm Water (온수 취득용 물탱크에 자연대류 방식 도입을 위한 단일진공관 태양열집열기의 성능평가 연구)

  • Do, Seung-Ju;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study was to evaluate the performance of a solar collector to introduce natural convection in a water tank as a means of obtaining warm water. Numerical analysis was performed to predict the characteristics of the solar collector and its performance was verified using an experimental method. The single vacuum structure of the collector enabled natural convection when it was fitted on the water tank. Based on numerical analysis, warm water of $31-54^{\circ}C$ was obtained when the inlet temperature of cold water was $20^{\circ}C$. Furthermore, the temperature of the warm water could be predicted under various conditions as well as the experimental conditions created for this study.

The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM (고해상도 해양예보모형 HYCOM에 재현된 쓰시마난류)

  • Seo, Seongbong;Park, Young-Gyu;Park, Jae-Hun;Lee, Ho Jin;Hirose, N.
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.135-146
    • /
    • 2013
  • This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, $1/12^{\circ}$ Global HYbrid Coordiate Ocean Model (HYCOM). The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP) mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv) (1 Sv = $10^6m^3s^{-1}$), which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002). The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82). The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

Improvement of Square Cup Drawability of Clad Sheet Metal by Warm Forming Technique (온간성형법에 의한 클래드 강판재의 정사각컵 드로잉성 향상에 관한 연구)

  • 류호연;김영은;김종호
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.253-260
    • /
    • 2001
  • This study was performed to investigate the optimized warm forming conditions which gave the maximum drawing depth in square cup drawing of clad sheet metals, by changing the temperatures of die and blankholder and also shapes and materials of blanks. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were selected for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was 29% higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.9 at $120^{\circ}C$ which was 15% better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant test and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

Effect of Hot Environment on the Body Temperature and Plasma Cortisol Concentration in Ruminant (高溫環境이 反芻家畜의 체온 및 혈장 Cortisol 농도에 미치는 影響)

  • Chung, Tae-Young;Yang, Young-Jik;Lee, Sang-Rak;Yoon, Hee-Sup
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Temperatures of blood and skin, respiratory rate and plasma cortisol concentration in sheep at a warm (average ambient temperature of $15.3^{\circ}C$) and a hot (average ambient temperature of $27.0^{\circ}C$ environment were measured to investigate the effect of hot environment on the physiological responses in ruminant. Temperatures of core, mean skin and mean body in sheep were tended to increase at day time and to decrease at night time at both warm and hot environment, while 24-hr average for those temperatures were significantly higher at hot environment than at warm environment (P<0.05). The calculated body heat content was higher in sheep at hot environment than at warm environment (P<0.05). Respiratory rate and plasma cortisol concentration had no significant differences between warm and hot environment, suggesting that sheep were not stress by the hot environment in this experiment. It is, therefore, suggested that sheep were well adopted to hot environment by increasing body heat content against heat stress.

  • PDF