• 제목/요약/키워드: Warm Press Forming

검색결과 21건 처리시간 0.025초

AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구 (Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy)

  • 권기태;강석봉;강충길
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

AZ3l 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구 (Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy)

  • 권기태;강석봉;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.149-153
    • /
    • 2008
  • Since magnesium alloy sheets have been employed in industrial field which requires the light weight and thin engineering components, most of researches have been focused on the formability of magnesium ahoy sheet. In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. Sheet metals were mostly formed in simple shapes such as circular or rectangular. Few studies about forming of complex shapes were reported. Thus, the formability of magnesium alloy sheet for complex shapes is investigated. The process variable for a double sink shape deep drawing with circular and rectangular shape was investigated by varying temperature, velocities, and clearances. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

  • PDF

박강판의 온도변화에 따른 인장특성 (The Tensile Characteristics of Steel Sheets at Various Temperature Conditions)

  • 이항수;오영근
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.101-110
    • /
    • 2001
  • The thermal problem of press work is classified into two cases. First, the temperature of forming die passively rises due to the heating effect of plastic deformation. The warm forming is the second case in which the external heating is applied to the die and blank holder. So, the purpose of this study is to provide database for the forming characteristics at various temperature conditions. In this study, the tensile test was carried out for the commercial steel sheets such as SCPI and SCP3C with the thickness of 0.7mm and 1.4mm respectively. The tensile strength, total elongation, Lankford value and the flow curve have been obtained at the temperature of $25^{\circ}C$, $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. From the results, we can see that both the tensile strength and total elongation decrease as the temperature increases. In the light of anisotropy, the effect of thickness is dominant than the material specs. For the temperature dependency of flow curves, there are only small differences for the work-hardening exponent, and the strength intensity decreases monotonically as temperature increases. The present results we useful as input data for the analysis of sheet metal forming processes with the various temperature conditions.

  • PDF

성형속도에 따른 AZ31판재의 온간 디프드로잉 성형성 연구 (A Study on the Forming Velocity Effect on the Warm Deep Drawing of AZ31 Sheet)

  • 김기덕;김흥규;김종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2007
  • Deep drawing of magnesium alloy sheet is conducted at elevated temperatures($200{\sim}300^{\circ}C$) to improve the press formability because of low formability at room temperature. Then magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, we conducted warm deep drawing tests of magnesium alloy AZ31 sheet for various punch velocities. We examined the forming velocity effect on the deep drawing formability and the correlation with the tensile test result.

  • PDF

회전 인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형한계 연구 (A Study of forming limit on rotational incremental forming of magnesium alloy sheet)

  • 박진기;배문기;유봉선;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.456-461
    • /
    • 2008
  • Being a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed (HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. However, we confirmed that using rotational incremental forming magnesium alloy sheets were formed without any heating at previous study. In this study, at the forming of square cup using rotational incremental sheet forming, the strain distributions were obtained and it was compared with forming limit curve at neck (FLCN). Also, forming limit curves at fracture (FLCF) of magnesium alloy sheets were obtained at elevated temperature and it was compared with the strain distribution of square cup of magnesium alloy sheet. In this study, we confirmed that conventional forming limit curves can not predict rotational incremental forming.

  • PDF

Epoxy Resin 첨가 및 제조공정에 따른 MDF 시멘트 복합재료의 수분안정성 연구 (The Study of Water Stability of MDF Cement Composite by Addition of Epoxy Resin and Manufacturing Process)

  • 노준석;김태진;박춘근;최상홀
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.371-377
    • /
    • 1998
  • HAC/PVA계 MDF 시멘트 복합재료의 수분안정성을 향상시키기 위하여 수용성 epoxy resm을 시멘트 중량에 대해 5wt% 에서 15wt%까지 첨가하고 calendering법, extruding법, warm pressing법으로 성형하여 epoxy resin첨가량 및 제조공정이 수분안정성에 미치는 영향을 살펴보았다. 제조된 시편은 건조상태 및 3일, 7일, 14일간 물 속에 침적 후 습윤강도를 3점 곡강도로 측정하고 SEM으로 표면 가까운 부분의 파단면을 관찰하고 수은압입법으로 기공분포 및 기공율을 분석하여 침수 재령벌 MDF 시멘트 복합재료의 미세조직 변화를 살펴보았다. 적량의 epoxy resin 첨가에 의해 건조강도는 감소하였으나 전반적으로 수분안정성이 향상되었다. 그러나 전반적으로 epoxy의 함량이 많아지면 초기건조강도는 감소하는 경향을 나타나었으며 epoxy 첨가량이 7wt% 이상일 경우에서는 수분안정성 역시 별다른 효과를 볼 수 없었다. 제조공정별로는 warm pressing법에 의해 성형된 경우 epoxy 첨가에 의한 강도 및 수분안정성 향상 효율이 다른 방법보다 월등히 뛰어났으며 epoxy resinmdmf 5wt%, 7wt% 첨가하였을 때, 최적의 강도 및 수분안정성 효과를 얻을 수 있었다.

  • PDF

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • 제7권2호
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.

A6061 알루미늄 합금의 다단 열간성형에 관한 연구 (Study on Multi-stage Hot Forming of A6061 Aluminum Alloy)

  • 김래형;오명환;정윤성;손성만;이문용;김지훈
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.161-168
    • /
    • 2024
  • Aluminum alloy sheets, compared to conventional steel sheets, face challenges in press forming due to their lower elongation. To enhance their formability, extensive research has focused on forming technologies at elevated temperatures, specifically warm forming at around 300℃ and hot forming at approximately 500℃. This study proposes that the formability of aluminum alloy sheets can be significantly enhanced using a multi-stage hot forming technique. The research also investigates whether the strength of the A6061 aluminum alloy, known for its precipitation hardening, can be maintained when formed below the precipitate solid solution temperature. In the experiments, the A6061-T6 sheet underwent heating and rapid cooling between 250 and 500℃. The mechanical properties were evaluated at each stage of the process. The findings revealed that when the initial heat treatment was below 350℃, the strength of the material remained unchanged. However, at temperatures above 400℃, there was a noticeable decrease in strength coupled with an increase in elongation. Conversely, when the secondary heat treatment was conducted at temperatures of 350℃ or lower, the strength remained comparable to that of the initial heat treated material. However, at higher temperatures, a reduction in strength and an increase in elongation were observed.

마그네슘 합금 AZ31 판재의 온간 사각컵 디프드로잉 공정의 유한요소 해석 (Finite-Element Analysis of Warm Square Cup Deep Drawing Process of Magnesium Alloy AZ31 Sheet)

  • 김흥규;이위로;홍석관;김종덕;한병기
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.232-240
    • /
    • 2006
  • Magnesium alloys are expected to be widely used fur the parts of structural and electronic appliances due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구 (A parametric Study in Incremental Forming of Magnesium Alloy Sheet)

  • 박진기;유봉선;김영석
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.