• Title/Summary/Keyword: Wargame Model

Search Result 29, Processing Time 0.019 seconds

A Study on Fully Automated OPFOR for 'Next Generation ROKA Wargame Simulation Model' Based on Gamer Behavior (게이머 행동 기반 '차세대 육군 워게임 모의모델'의 완전자동화 대항군 구현에 관한 연구)

  • Lee, Byeong-Ho;Kim, Tae-Ho;Ryu, Jae-Hark;Shin, Young-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.610-613
    • /
    • 2021
  • 육군은 90년대부터 워게임 모의모델을 활용하여 군단 전투지휘훈련, 전구 연합지휘소연습, 사·군단 작전계획 검증을 하였으며, 현재는 차세대 워게임 모의모델을 개발하기 위한 기술적 검토단계에 있다. 워게임 모의모델의 객체인 가상군을 자동화하기 위한 연구는 오래전부터 진행되었으나, 규칙기반 시스템을 적용한 반자동화군에 대한 연구가 일부 진행된 수준이다. 이에 본 논문에서는 게이머 행동패턴을 기반으로 학습한 인공지능으로 차세대 육군 워게임모델의 대항군 기동부대를 완전자동화하는 방안을 제안하였다.

Modeling Scheme for Calculating Encounter Probability Versus Minefleld Density (지뢰지대 밀도별 접촉확률 산정 모델링 방안)

  • Baek, Doo-Hyeon;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • The encounter probability graph is measured by the chance(in percent) that a vehicle, blindly moving through a minefield, will detonate a mine. The encounter probability graph versus minefield density is presented in ROK and US Army field manual but this graph is baseless because these data had not been presented as those of live mobility or wargame. In this paper, we verified this graph building procedure model as using computer program. The result values of program are almost like those of graph. Therefore this model for our to suggest have validation, verification that a modeling demand and we convince that this model will be useful for calculating encounter probability of multiple vehicles.

A Study on the Interoperability of ROK Air Force Virtual and Constructive Simulation (공군 전투기 시뮬레이터와 워게임 모델의 V-C 연동에 대한 연구)

  • Kim, Yong Hwan;Song, Yong Seung;Kim, Chang Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • LVC(Live-Virtual-Constructive) training system is drawing attention due to changes in battlefield situation and the development of advanced information and communication technologies. The ROKAF(Republic of Korea Air Force) plans to construct LVC training system capable of scientific training. This paper analyzes the results of V-C interoperability test with three fighter simulators as virtual systems and a theater-level wargame model as a constructive system. The F-15K, KF-16, and FA-50 fighter simulators, which have different interoperable methods, were converted into a standard for simulation interoperability. Using the integrated field environment simulator, the fighter simulators established a mutually interoperable environment. In addition, the Changgong model, which is the representative training model of the Air Force, was converted to the standard for simulation interoperability, and the integrated model was implemented with optimized interoperability performance. Throughput experiments, It was confirmed that the fighter simulators and the war game model of the ROKAF could be interoperable with each other. The results of this study are expected to be a good reference for the future study of the ROKAF LVC training system.

A Mission Capability Measuring Methodology of Warship based on Vulnerability Assessment: Focused on Naval Engagement Level Analysis Model (취약성 평가 기반 함정 임무수행능력 측정 방법: 해군 교전급 분석모델을 중심으로)

  • Jeong-kwan Yang;Bong-seok Kim;Bong-wan Choi;Chong-su Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.218-228
    • /
    • 2023
  • Maintaining sea superiority through successful mission accomplishments of warships is being proved to be an important factor of winning a war, as in the Ukraine-Russia war. in order to ensure the ability of a warship to perform its duties, the survivability of the warship must be strengthened. In particular, among the survivability factors, vulnerability is closely related to a damage assessment, and these vulnerability data are used as basic data to measure the mission capability. The warship's mission capability is usually measured using a wargame model, but only the operational effects of a macroscopic view are measured with a theater level resolution. In order to analyze the effectiveness and efficiency of a weapon system in the context of advanced weapon systems and equipments, a warship's mission capability must be measured at the engagement level resolution. To this end, not the relationship between the displacement tonnage and the weight of warheads applied in the theater level model, but an engagement level resolution vulnerability assessment method that can specify physical and functional damage at the hit position should be applied. This study proposes a method of measuring a warship's mission capability by applying the warship vulnerability assessment method to the naval engagement level analysis model. The result can be used as basic data in developing engagement algorithms for effective and efficient operation tactics to be implemented from a single unit weapon system to multiple warships.

A Stochastic Combat Simulation Model with Heterogeneous Weapon Systems (확률과정을 따르는 혼합 무기체계 전투시뮬레이션 모델)

  • Chung, Yong-Hun;Hong, Yoon-Gee
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • The real data obtained from field exercises has a crucial role in modeling and simulation of a combat or a wargame. This becomes an important input especially in analyzing weapon systems realization. Many existing models have been using the mean value of the time between each fire. The firing data can be incorporated into a known probability distribution or used directly as an empirical distribution. Data of field exercises are very useful instead of the real combat outcomes. This study finds a new modeling approach and techniques to compare the data with the previously generated outcomes. This fundamental research work will continue to consider more of the various weapon systems, the sizes, and other tactical aspects.

Operational Effectiveness Analysis of Field Artillery Ammunition Support Vehicle for K-55 Self-Propelled Artillery Using Simulation (시뮬레이션을 이용한 K-55자주포용 탄약운반장갑차 운용효과 분석)

  • Jung, Chi-Young;Lee, Jae-Moon;Lee, Jae-Yeong;Park, Young-Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Korea army is operating K-10 FAASV (Field Artillery Ammunition Support Vehicle) for K-9 SP (Self-Propelled artillery) and examining employment of FAASV for K-55 SP. At present, the FAASV for K-55 SP has been developed as a prototype. To decide the employment of this FAASV for K-55 SP, previous research for operational effectiveness of this equipment is needed. Therefore in this paper, we presented the result of the operational effectiveness of the FAASV for K-55 SP using a wargame model, FEAM (Fire Execution Analytic Model) which is used to analyze formation, weapon system and operation in army artillery field. Based on the result of the FEAM simulation, we introduced the operational effectiveness of FAASV for K-55 SP, which is able to be applied to decide whether employ FAASV for K-55 SP or not.

The Combat Effectiveness Analysis of Attack Helicopter Using Simulation and AHP (시뮬레이션 및 AHP기법을 이용한 공격헬기 전투효과 분석)

  • Lee, Jae-Moon;Jung, Chi-Young;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2010
  • The purpose of this paper is to propose a methodology that can measure the combat effectiveness of attack helicopter which Korea army will be operating in the near future. To measure the combat effectiveness, firstly, we use a wargame model, AAsim (Army Aviation simulation), as a analytic simulation model which is used to analyze DOTMLPF and operation in army aviation field, secondly we use an Analytic Hierarchy Process by opinion of experts. For simulation and AHP, we consider anti armored corps operation reflecting attack helicopter's combat effectiveness. As a result of this study, the combat effectiveness per each attack helicopter can be measured and this combat effectiveness is useful for reasonable decision making such as selection helicopter type, quantity when acquiring new weapon system.

A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network (인공신경망을 이용한 대대전투간 작전지속능력 예측)

  • Shim, Hong-Gi;Kim, Sheung-Kown
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.25-39
    • /
    • 2008
  • The objective of this study is to forecast the operational continuous ability using Artificial Neural Networks in battalion defensive operation for the commander decision making support. The forecasting of the combat result is one of the most complex issue in military science. However, it is difficult to formulate a mathematical model to evaluate the combat power of a battalion in defensive operation since there are so many parameters and high temporal and spatial variability among variables. So in this study, we used company combat power level data in Battalion Command in Battle Training as input data and used Feed-Forward Multilayer Perceptrons(MLP) and General Regression Neural Network (GRNN) to evaluate operational continuous ability. The results show 82.62%, 85.48% of forecasting ability in spite of non-linear interactions among variables. We think that GRNN is a suitable technique for real-time commander's decision making and evaluation of the commitment priority of troops in reserve.

  • PDF

Design and Effect Analysis of Confederation Interface for ROK-US Combined Exercises (한미 연합연습 모의지원을 위한 다중 페더레이션 인터페이스 설계 및 효과분석)

  • Won, Kyoungchan;Jeong, Sukjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.498-506
    • /
    • 2018
  • Recently, the US commanded a wargame simulation system of a combined ROK-US exercise with single federation. However, after the OPCON transfer, many limitations to the single federation have been cited such as security policies and information protection. We suggest a hierarchical federation as a way to overcome these problems. Regarding HLA rules, the participants use the same FOM and RTI in single federation. There are limitations to implement CI in applying heterogeneous FOMs and RTIs in current single federation. Therefore, we propose implementing CI with heterogeneous FOMs and RTIs in a hierarchical federation. This system overcomes the weaknesses of the system structure, which is a disadvantage of the single federation. In the federation test, we can apply heterogeneous FOMs and RTIs and achieve similar performance to the current combined exercise simulation. In conclusion, ROK should lead the simulation system of combined exercises using the CI after the OPCON transfer.