• 제목/요약/키워드: Walls

검색결과 4,321건 처리시간 0.023초

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

섬유(Fiber)요소와 비선형 전단스프링을 적용한 고축력을 받는 철근콘크리트 전단벽의 비선형거동 분석 (Pushover Analysis of Reinforced Concrete Shear Wall Subjected to High Axial Load Using Fiber Slices and Inelastic Shear Spring)

  • 전대한
    • 한국지진공학회논문집
    • /
    • 제19권5호
    • /
    • pp.239-246
    • /
    • 2015
  • Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.

억지말뚝 흙막이공법에 설치된 복합버팀의 보강효과에 관한 실험적 연구 (An Experimental Study on the Reinforcement Effect of Installed composite stiffener on Earth Retaining Walls using Stabilizing Piles)

  • 김태효;임종철;박이근;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1224-1239
    • /
    • 2008
  • The earth retaining walls using stabilizing piles can be applied to shallow excavation works without any stiffener. But, It demends a variety of installed composite stiffener on the earth retaining walls when it is installed as deep excavation works. Because, it causes an excessive displacement of walls. This research tried to overcome the problems created by the above issues and intended to apply the composite stiffener. The model test, focused on the effect of installed composite stiffener, measured the bending stress with stabilizing piles and walls, the settlement of earth surface, the displacement of walls for a step excavation and an increase in strip load. With the test results and soil deformation analysis, the reinforcement effect(relating to control displacement and earth presure) was analyzed in a qualitative and quantitative manner. It is expected to overcome a deep excavation works.

  • PDF

기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구 (Experimental Study On Seismic Behavior Of Masonry Walls With Column)

  • 국지건아;박강근
    • 한국공간구조학회논문집
    • /
    • 제6권2호
    • /
    • pp.93-105
    • /
    • 2006
  • 본 연구는 보강 조적벽체의 지진거동에 대한 실험적 연구로써, 기둥의 보강, 조적벽체의 보강, 횡하중 높이에 대한 역학적 특성을 분석하였다. 시험체는 구멍이 있는 콘크리트 블록으로 만들었고, 전단 스팬비, 횡하중 높이의 영향, 보강기둥 및 벽체 철근 보강비에 대한 구조적 특성을 파악할 수 있도록 하였다. 벽체의 횡력에 대한 하중점의 벽체 높이의 0.67, 1.08 및 1.1배로 하였다. 수평방향의 철근비는 0, 0.08, 0.18, 수직 방향의 철근비는 0.18, 0.36, 0.64로 하였다.

  • PDF

Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions

  • Gursoy, Senol;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.75-91
    • /
    • 2009
  • It is known that retaining walls were severely damaged as well in the most recent earthquakes having occurred in the countries in the active seismic belts of the world. This damage can be ascribed to the calculation methods used for the designs of retaining walls in the event of their constructions and employment having been accurately carried out. Generally simplified pseudo-static methods are used in the analysis of retaining walls with analytical methods and soil-structure interaction are not considered. In view of these circumstances, in this article by taking soil interaction into consideration, linear and nonlinear behaviours of retaining walls are analyzed with the assistance of LUSAS which is one of the structural analysis programs. This investigations are carried out per LUSAS which employs the finite element method as to the Erzincan (1992) Earthquake North-South component and the obtained findings are compared with the ones obtained from the method suggested in Eurocode-8, which is still effective today, and Mononobe-Okabe method. Not only do the obtained results indicate the distribution and magnitude of soil pressures are depend on the filling soil but on the foundation soil as well and nonlinear effects should be considered in designs of these walls.

Computer modeling of crack propagation in concrete retaining walls: A case study

  • Azarafza, Mehdi;Feizi-Derakhshi, Mohammad-Reza;Azarafza, Mohammad
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.509-514
    • /
    • 2017
  • Concrete retaining walls are the most common types of geotechnical structures for controlling instable slopes resulting from lateral pressure. In analytical stability, calculation of the concrete retaining walls is regarded as a rigid mass when its safety is required. When cracks in these structures are created, the stability may be enforced and causes to defeat. Therefore, identification, creation and propagation of cracks are among the important steps in control of lacks and stabilization. Using the numerical methods for simulation of crack propagation in concrete retaining walls bodies are among the new aspects of geotechnical analysis. Among the considered analytical methods in geotechnical appraisal, the boundary element method (BEM) for simulation of crack propagation in concrete retaining walls is very convenient. Considered concrete retaining wall of this paper is Pars Power Plant structured in south side in Assalouyeh, SW of Iran. This wall's type is RW6 with 11 m height and 440 m length and endurance of refinery construction lateral forces. To evaluate displacement and stress distributions (${\sigma}_{1,max}/{\sigma}_{3,min}$), the surrounding, especially in tip and its opening crack BEM, is considered an appropriate method. By considering the result of this study, with accurate simulation of crack propagation, it is possible to determine the final status of progressive failure in concrete retaining walls and anticipate the suitable stabilization method.

국내 공동주거 공간 이미지 요소로서의 아트월 패턴 연구 (Characteristics of Patterns on Art-Walls as an Imagery Element in Contemporary Living Spaces)

  • 박영순;김성아;김은정;임선희
    • 한국실내디자인학회논문집
    • /
    • 제19권3호
    • /
    • pp.86-94
    • /
    • 2010
  • Art-Wall is the term for a surface wall representing artistic expression by using different materials or images in interior spaces. Usually this is the focal point in an interior space and sometimes it called as an image wall. In the new millenium Art-walls began to use in living spaces. While in the early stages of the development, Art-Wall was limited in a living room, in contemporary it spread into overall living spaces using various patterns and materials. Therefore, the research on Art-Walls in contemporary living spaces is essential to understand this development. The purpose of this study is to find out characteristics of patterns on Art-Walls as an imagery element in contemporary interior spaces. To analyze the characteristic, the analysis table for Art-Walls are constructed based on classifications of wallpapers and textiles. Based on this analysis table, 89 examples of Art-Walls from four major periodicals from 2008 to 2009 were examined. As a result of the analysis, in contemporary interior spaces solid-texture pattern is most frequently appeared. Then natural motifs are the next most popular using oversized or irregular layouts. The result shows that naturalistic expression is significant in interior space in 2008 to 2009. Therefore, Art-Walls that adapted diverse patterns are an essential element in contemporary interiors to represent the major concept of the space.

쏘일네일링 벽체에 대한 대형파괴재하시험 사례 (A Case Study on the Large Scaled Load Test of Soil Nailed Walls)

  • 강인규;류정수;권영호;이승현;박신영
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.135-145
    • /
    • 2006
  • Soil nailing systems are generally many used in underground excavations and reinforcements of slopes since the first construction as a temporary retaining wall in 1993, Korea. In recently, they are many attempts to expand the permanent reinforcements of slopes However, experimental studies related to soil nailing systems are insufficient Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nail walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out

  • PDF

$BaTiO_3$의 강유전성 분역 (Ferroelectric Domans in $BaTiO_3$)

  • 박봉모;정수진
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.56-64
    • /
    • 1996
  • A large amount of papers about the cubic-to-tetragonal phase transition the ferroelectric domain structures of the BaTiO3 were already reported but there exist still some needs to observe the domain behaviors directly. In this study the domain structures of the tinned plates prepared from ta single crystal grown by the TSSG technique were observed using a polarizing microscope TE and X-ray topography. The spatial relation be-tween the orientation states of domains was investigated and the effects of external stresses and electric fields on the behaviors of ferroelectric and ferroelastic domains were studied. All the 90$^{\circ}$walls cut off in the crystal are the wedge shaped lamellar domains and all the straight boundaries in the observed domain patte군 can be interpreted as the head-to-tail 90$^{\circ}$walls. The irregular overlapped boundaries commonly observed by using a polarizing microscope and X-ray topography are complex combinations of well-known 90$^{\circ}$walls and are domain walls were predominant and were stabilized after surface polishing. In the paraelectric phase region the domain walls vanished but the residual surface strain patterns could be seen at the same positions of the stabilized 90$^{\circ}$a-a walls in the tetragonal phase region, These stabilized walls resulted from the surface strain had a memory effect in domain formation during the repeated phase transitions and could notr be affected by an external electtric field.

  • PDF