• Title/Summary/Keyword: Walls

Search Result 4,321, Processing Time 0.031 seconds

THE ADAPTIBILITY OF LIGHT-CURED GLASS-IONOMER CEMENTS TO CAVITY WALLS. (와동벽에 대한 광중합형 글래스아이오노머 시멘트의 적합도)

  • Kang, Mi-Sun;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.173-182
    • /
    • 1995
  • The purpose of this study was to evaluate the adaptability of light-cured glass ionomer cement to cavity walls. Class V cavities were prepared on the labial surfaces of extracted bovine incisor teeth. The cavities were restored with Fuji II as self-cured glass ionomer cement and Fuji II LC, Vitremer as light-cured glass ionomer cement. Fluorescent markers (fluoreceine and rhodamin B) were incorperated into liquid and primer for a better image of microscopic observation. Restored teeth were sectioned by longitudinal and labiolingual direction. The adaptability at the tooth-restoration interface was assessed incisally, axially and cervically by confocal scanning laser microscope. Following results were obtained : 1. Chemical-cured glass iomomer cement restoration showed close adaptation on the all of the cavity walls, but, cracks formed within the cement. 2. Light-cured glass ionomer cement restoration was well adapted to the cavity walls, but showed crack in the cement adjacent to axial dentinal wall. 3. There' was no significant difference in adaptability between two light-cured glass ionomer cement restorations.

  • PDF

FE Analysis on In-Plane Behavior of Unreinforced Masonry Walls (비보강 조적벽체의 면내거동에 대한 FEM 해석)

  • 김장훈;권기혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.45-52
    • /
    • 2001
  • A series of unreinforced masonry (URM) walls were analytically investigated for a limited version of seismic in-plane performance. For this URM walls were assumed to be an elastic continuum and modeled as isotropic plane stress elements within which the nature of cracking was propagated. Accordingly, cracking mode of behavior in URM was modeled by smeared-crack approach. Total of 70 cases were considered for various parameters such as axial load ratio, aspect ratio and effective section area ratio due to the existence of opening, etc. The analysis results indicated a general tendency in base shear coefficient and deformability of URM walls for these variables.

  • PDF

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

The AFOSM Study of RC Shear Wall within Feasible Design Area (유용설계 영역내 철근콘크리트 전단벽의 ASOFM 해석에 관한 연구)

  • 김요숙;신영수;이화미
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.207-214
    • /
    • 2001
  • In Korea, the multi-dwelling residential buildings are most popular housing system that is reinforced concrete shear wall system. However, the serviceability and safety of the system have been decreased because of the errors in design or construction and inadequate maintenance. In addition the safety of the system cannot be evaluated reasonably because the system is analyzed by the deterministic approach. Therefore, this study is aimed to analyze reinforced concrete shear walls by the reliability approach considering uncertainty based on the probability theory. In this study, a reliability analysis program using MATLAB is developed by combining AFOSM and Sampling Method for the reinforced concrete shear walls within feasible design area. The reasonable reliability index β of ultimate limit states for RC shear walls are calculated automatically using this developed program with the measured data those have means and standard deviations in the field. The ultimate states are compression failure, tension failure, governing compression, and governing bending of the reinforced concrete shear walls respectively. To estimate the safety of the system using developed program can be used to predict residual life-time of the system.

  • PDF

Seismic Performance of Precast Concrete Bearing Walls with Hollow Core (유공 PC 벽체의 내진 거동에 관한 연구)

  • 이리형;한상환;조순금;남기룡;최근도
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.425-430
    • /
    • 1996
  • The purpose of this study is to investigate the behavior of the bearing precast concrete (pc) wall structure with hollow core based on experimental tests. In order to evaluate the cyclic performance of the pc walls. Too one story pc walls and ond one reinforced concrete wall are made. The experimental results of pc walls were compared with those values of reinforced concrete (rc) wall. The structural behaviors of pc wall structure with hollow core are similar to those of reinforced concrete bearing wall structure. This study shows that the pc wall with hollow core could be treated as rc wall when designs the pc wall structure against lateral loads

  • PDF

An Evaluation of the Collaborative Urban Environment Improvement Initiative in South Korea: A Case Study of Demolishing Walls Initiative in Daegu City (한국의 공동체 도시환경 개선사업 평가: 대구광역시 담장허물기사업을 사례로)

  • Kim Soobong
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.863-870
    • /
    • 2004
  • The main objectives of this research are to analyse and evaluate the demolishing walls initiative in Daegu city as the collaborative urban environment improvement initiative in South Korea using the actor network theory concept. Local authorities are unable to effectively and efficiently improve urban environment because of their limited statutory and financial powers. This inability crucially led to the formation of the demolishing walls initiative in Daegu city with building a coalition of the local people, interest groups and public and non-governmental organisations in the operational processes in order to improve the physical and social urban environments. Furthermore, co-ordination between local authorities and landscape architecture specialists not only to change the way in which they tackle urban environmental problems but also to make the local people aware of their potential ability in positively improving the urban environment.

Research on the railroad reinforcement subgrade with short reinforcement and rigid facing (강성벽체와 단보강재를 갖는 철도보강노반에 대한 연구)

  • Kim, Dang-Sang;Kim, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.350-358
    • /
    • 2009
  • To enhance the application of the reinforced retaining walls in the railway industry, this paper suggested a type of reinforcement subgrade with short reinforcement and rigid facing. To become popular the reinforced retaining walls in the industry, the deformation of retaining walls should be controlled below some limited level. In this paper, small scale and full scale tests of the proposed retaining walls were performed and their deformation characteristics were evaluated. Even though it has short reinforcement, the rigid type retaining wall had small deformation to the external train loading than the segmental type retaining wall had.

  • PDF

Excremental Study on Wave Drag in Supersonic Wavy Walls (초음속 파동 벽면에서의 조파저항에 관한 실험적 연구)

  • Kwon, Min-Chan;Semenov, Vasily V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.758-759
    • /
    • 2010
  • In this study, it was experimentally confirmed that the phenomenon of resonance effect of wave drag in two wavy walls. The channel had saw-tooth type of relief surfaces when supersonic gas flows into this channel. Experiment was carried out on the differential apparatus by conducting the comparative test of two nozzles (round sonic nozzle and two-dimensional nozzle with wavy walls). The two-dimensional nozzle was joined alternately with flat walls which had saw-tooth type of symmetrical and asymmetric reliefs. Two-dimensional nozzle was designed for the M=3 and profiled parabolic contour.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Seismic behavior of RC building by considering a model for shear wall-floor slab connections

  • Soleimani-Abiat, Mehdi;Banan, Mohammad-Reza
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.381-397
    • /
    • 2015
  • Connections are the most important regions in a structural system especially for buildings in seismic zones. In R.C. structures due to large dimensions of members and lack of cognition of the stress distribution in a connection, reaching a comprehensive understanding of the connection behaviors becomes more complicated. The shear wall-to-floor slab connections in lateral load resisting systems have a potential weakness in transferring loads from slabs to shear walls which might change the path of load transformation to shear walls. This paper tries to investigate the effects of seismic load combinations on the behavior of slabs at their connection zones with the shear walls. These connection zones naturally are the most critical regions of the slabs in RC buildings. The investigation carried on in a simulated environment by considering three different structures with different shear wall layout. The final results of our study reveal that layout of shear walls in a building significantly affects the magnification of forces developed at the shear wall-floor slab connections.