• Title/Summary/Keyword: Wall-charge

Search Result 188, Processing Time 0.023 seconds

Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge (Gate 전하를 감소시키기 위해 Separate Gate Technique을 이용한 Trench Power MOSFET)

  • Cho, Doohyung;Kim, Kwangsoo
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.283-289
    • /
    • 2012
  • In this paper, We proposed Separate Gate Technique(SGT) to improve the switching characteristics of Trench power MOSFET. Low gate-to-drain 전하 (Miller 전하 : Qgd) has to be achieved to improve the switching characteristics of Trench power MOSFET. A thin poly-silicon deposition is processed to form side wall which is used as gate and thus, it has thinner gate compared to the gate of conventional Trench MOSFET. The reduction of the overlapped area between the gate and the drain decreases the overlapped charge, and the performance of the proposed device is compared to the conventional Trench MOSFET using Silvaco T-CAD. Ciss(input capacitance : Cgs+Cgd), Coss(output capacitance : Cgd+Cds) and Crss(reverse recovery capacitance : Cgd) are reduced to 14.3%, 23% and 30% respectively. To confirm the reduction effect of capacitance, the characteristics of inverter circuit is comprised. Consequently, the reverse recovery time is reduced by 28%. The proposed device can be fabricated with convetional processes without any electrical property degradation compare to conventional device.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Development of Silent Discharge Chamber with Al2O3 Dielectric Pellet to Improve Ozone Generation Characteristics (오존발생특성 향상을 위한 강유전성 알루미나 무성방전관의 개발)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.58-64
    • /
    • 2006
  • Recently deep interests have been paid on the effective generation of ozone, which has been widely used for water treatment, deodorization, color removal, and chemical processing of exhausted smoke. The silent discharge reaction has been proposed as the most effective one in the many ozone generation methods, because the silent discharge can be generated under the conditions of lower applied voltage and power consumption, compared other ones. In this paper, in order to improve the ozone generation and ozone generation efficiency, the conventional silent discharge chamber with $Al_2O_3$ dielectric layer and tubular ferroelectric bed discharge reactor packed with $Al_2O_3$ pellets were made, and the silent discharge of the reactors were studied experimentally. The ozone generation characteristics are also discussed based on the discharge characteristics, especially on the wall charge accumulation properties and power consumption. The results show that the electric charges of discharge tube with bead are around 2.5 times as large as those without bead. In the discharge chamber packed with dielectric beads, the ozone concentration and the energy yield characteristics were also improved, compared with those in the conventional silent discharge reactor.

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

Channel geometry-dependent characteristics in silicon nano-ribbon and nanowire FET for sensing applications

  • Choe, Chang-Yong;Hwang, Min-Yeong;Kim, Sang-Sik;Gu, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.33-33
    • /
    • 2009
  • Silicon nano-structures have great potential in bionic sensor applications. Atomic force microscopy (AFM) anodic oxidation have many advantages for the nanostructure fabrication, such as simple process in atmosphere at room temperature, compatibility with conventional Si process. In this work, we fabricated simple FET structures with channel width W~ 10nm (nanowire) and $1{\mu}m$ (nano-ribbon) on ~10, 20 and 100nm-thinned silicon-on-insulator (SOI) wafers in order to investigate the surface effect on the transport characteristics of nano-channel. For further quantitative analysis, we carried out the 2D numerical simulations to investigate the effect of channel surface states on the carrier distribution behavior inside the channel. The simulated 2D cross-sectional structures of fabricated devices had channel heights of H ~ 10, 20, and 100nm, widths of L ~ $1{\mu}m$ and 10nm respectively, where we simultaneously varied the channel surface charge density from $1{\times}10^{-9}$ to $1{\times}10^{-7}C/cm2$. It has been shown that the side-wall charge of nanowire channel mainly affect the I-V characteristics and this was confirmed by the 2D numerical simulations.

  • PDF

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

Effect of Sampling Cassettes Type used in Sampling of Airborne Carbon Nanotube(CNT) to Electrostatic Loss (공기 중 탄소나노튜브 시료채취 시 사용하는 카세트 종류가 벽면 손실에 미치는 영향)

  • Ham, Seunghon;Kim, Songha;Lee, Jinho;Lee, Naroo;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.180-186
    • /
    • 2017
  • Objectives: The purposes of this study were to compare the surface resistance of cassettes according to the material, and to evaluate the wall deposition of carbon nanotubes(CNTs) by electrostatic loss in the inner wall of the cassette. Methods: Surface resistance was measured for three types of cassettes(25 mm polypropylene conductive cowl, 25 mm and 37 mm clear styrene cassettes) with a surface resistance meter. Also, electrostatic wall loss was measured at different weights of CNTs depending on the cassette. CNTs were laid on a weight dish with the cassette for five minutes to provide sufficient time to attach on the wall. Wipe sampling was performed to collect CNTs deposited on the wall and elemental carbon, known as a surrogate for CNTs, was analyzed. Results: The cassette with conductive materials(18% of black carbon) showed the lowest surface resistance($<1.21{\times}10^3{\Omega}$). Cassettes made from clear polystyrene showed the relatively highest surface resistance(25 mm: $10.02{\times}10^9{\Omega}$, 37 mm: $10.59{\times}10^9{\Omega}$). This means that particles are more likely to stick to the internal wall of styrene cassettes due to electrostatic electricity. This may lead to an underestimation of the airborne concentration of CNTs. The experiment showed that EC was not detected when using a 25 mm conductive cowl cassette, while EC was detected at the internal wall of 25 mm and 37 mm polystyrene cassettes. Conclusions: This study confirms that cassettes with a conductive cowl have low surface resistance and are more appropriate for CNT sampling. In addition, this finding could be applied for other types of particulate, especially regarding electrostatic charge and sampling.

Binding Site of Heavy Metals in the Cell of Heavy Metal-Tolerant Microorganisms (중금속 내성균의 세포내 중금속 결합 위치)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Young-Han;Sohn, Bo-Kyoon;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.246-253
    • /
    • 1998
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The binding sites of heavy metal in the cells were investigated by chemical modification of functional groups the cell walls. To determine the binding sites of heavy metal in the cells, electrochemical charge of amine and carboxyl groups in the cell walls of heavy metal-tolerant microorganisms were chemically modified. Chemical modifications of amine groups did not affect the heavy metal uptake as compared to native cell walls. In contrast, modifications of carboxyl groups drastically decreased heavy metal uptake as compared to native cell walls, and electron microscopy confirmed that the form and structure of the heavy metal uptake were different from those of native cell walls. The results suggested that the carboxyl groups were the major sites of heavy metal uptake in the heavy metal-tolerant microorganism cell.

  • PDF

Analytical study of failure damage to 270,000-kL LNG storage tank under blast loading

  • Lee, Sang Won;Choi, Seung Jai;Kim, Jang-Ho Jay
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridianally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.