• Title/Summary/Keyword: Wall stress index

Search Result 45, Processing Time 0.029 seconds

Wall Shear Stress Between Compliant Plates Under Oscillatory Flow Conditions: Influence of Wall Motion, Impedance Phase Angle and Non-Newtonian Fluid (맥동유동하에 있는 유연성 있는 평판 사이의 벽면전단응력: 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choe, Ju-Hwan;Lee, Jong-Seon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2001
  • The present study investigates flow dynamics between two dimensional compliant plates under sinusoidal flow conditions in order to understand influence of wall motion, impedance phase angle (time delay between pressure and flow waveforms), and non-Newtonian fluid on wall shear stress using computational fluid dynamics. The results showed that wall motion induced additional terms in the streamwise velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. The trend of the changes was very different depending on the impedance phase angle. As the impedance phase angle was changed to more negative values, the mean wall shear stress decreased while the amplitude of wall shear stress increased. As the phase angle was reduced from 0°to -90°under $\pm$4% wall motion, the mean wall shear stress decreased by 12% and the amplitude of wall shear stress increased by 9%. Therefore, for hypertensive patients who have large negative phase angles, the ratio of amplitude and mean of the wall shear stress is raised resulting in a more vulnerable state to atherosclerosis according to the low and oscillatory shear stress theory. We also found that non-Newtonian characteristics of the blood protect atherosclerosis by decreasing the oscillatory shear index.

Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery (협착된 경동맥내 천이 유동 수치 해석)

  • Kim, Dongmin;Hwang, Jinyul;Min, Too-Jae;Jo, Won-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

Influence of the Anastomosis Angle Variation on Flow Features and Wall Shear Stress of an Artery (관상동맥 우회로 관의 문합각도의 변화가 유동과 벽 전단력에 미치는 영향)

  • Kim H. M.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • It is known that the non-planar model of bypass is more profitable to suppress the development of intimal hyperplasia that tends to occur preferentially in regions of low time averaged shear stress and rapid temporal changes in wall shear stress. In this study it was numerically simulated the blood flow in an coronary artery grafted by artificial bypass to determine the flow characteristic variations due to the anastomosis angle changing. 5 different non-planar anastomosis angle models such as 45°, 60°, 90°, 120° and 135° were considered. When the anastomosis angle is higher, the backward flow region is spatially extended near the downstream region of the anastomosis because of the development of horseshoes vortex. For the case of the nan-planar 45° and 60° of anastomosis, the area of low-OSI zone was decreased by 26% and 13% respectively and the time averaged wall shear stress was increased by more than 55% as compared with 45° of planar model. However, both of the area of the low-OSI zone and the time averaged wall shear stress of 90°, 120° model were significantly increased.

Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry (실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구)

  • Kang, Han-Young;Kim, Min-Cheol;Hong, Yi-Song;Lee, Chong-Sun;Lee, Jong-Min;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석)

  • 김연태;김상철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

Analysis of Arc Tube Properties by Degradation in Ceramic Metal Halide Lamp

  • Yang, Jong-Kyung;Jang, Hyeok-Jin;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • To clarify the relations of optical properties to the main factors responsible for the loss and damage of luminous efficacy, a 20 min turn-on/turn-off test for 2,000 h for a ceramic metal halide lamp is conducted. The corrosion rates of the arc tube wall and electrode are estimated based on thermal stress. Wall blackening is attributed to the tungsten being transported from the hot electrode tips to the relatively cold arc tube wall. Furthermore, the grain boundaries of the arc tube are changed by the degradation. Distortion of the electrode is observed, and the ignition and the driving voltage of the load both increase. Finally, the color rendering index and the color coordinates are changed after the degradation. The luminous flux and the intensity of the luminous distribution are decreased significantly.

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.