• Title/Summary/Keyword: Wall reinforcement

Search Result 526, Processing Time 0.028 seconds

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load (정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가)

  • Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.31-42
    • /
    • 2015
  • The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

An Experimental Study on the Improvement of Flexural Capacity of Reinforced Concrete Shear Wall Using Carbon Fibers (탄소섬유를 사용한 철근콘크리트 전단벽의 휨성능 개선에 관한 실험연구)

  • 하기주;서수연;신종학;전찬목;김성수;이상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.567-572
    • /
    • 2003
  • An experimental work is presented to evaluate the retrofit method for improving the flexural capacity of shear walls. Fives shear wall specimens are designed and retrofitted by using carbon fiber materials such as rod, sheet and plate. Cyclic horizontal loads are applied to the specimens under constant axial load, $0.1f_{ck}A_g$. Test result shows that specimens with additional flexural reinforcement have the increased initial stiffness and deformation capacity. However, the strength is not improved as much as expected. This is because that the flexural reinforcement is pulled out from the foundation at the latter half of cycles. In order to maximize the flexural retrofit, therefore, it is required to study the anchorage behavior of the flexural reinforcement for retrofit.

  • PDF

Shear Strength Equation for Slender Diagonally Reinforced Coupling Beam (세장한 대각보강 연결보의 전단강도 예측식)

  • Han, Sang Whan;Kang, Jin Wook;Han, Chan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.361-368
    • /
    • 2016
  • Coupling beams serve as primary source of energy dissipation in coupled shear wall systems during large earthquakes. However, the overestimation of the shear strength of diagonally reinforced coupling beams may be adverse effect on the seismic performance of coupled shear wall systems. In order to force coupling beams to properly work during earthquakes, coupling beams should be designed with accurate shear strength equations. The objective of this study is to propose the accurate shear strength equation for slender diagonally reinforced coupling beams. For this purpose, experimental tests were conducted using three diagonally reinforced coupling specimens with different amount of transverse reinforcement under reversed cyclic loads to evaluate the hysteretic behavior of the specimens. The test results show that transverse reinforcement of slender diagonally reinforced coupling beam affects the maximum strength and drift ratio.

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

Design and Construction of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (쏘일네일의 토압분담효과를 고려한 그린월 시스템의 설계 및 시공)

  • Park, Si-Sam;Cho, Sung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Green Wall system, developed in Austria early 1960, is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Green wall has pro-environmental advantages that able to grow grass in front space of stretchers and decrease cutting ground. In Europe, Green wall used without other reinforcement method. However, green wall used with other reinforcement method like a soil nailing because of environmental problem. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'.

  • PDF