• Title/Summary/Keyword: Wall reflection

Search Result 170, Processing Time 0.028 seconds

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices

  • Nakajima, Isao;Tanaka, Sachie;Mitsuhashi, Kokuryo;Hata, Jun-ichi;Nakajima, Tomo
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.293-302
    • /
    • 2019
  • In the past, there was a theory that influenza wasn't transmitted directly from birds but was infected to humans via swains. Recently, molecular level research has progressed, and it was confirmed that the avian influenza virus can directly infected to human lung and intestinal epithelial cells. Three pandemicsin the past 100 years were also infected to humans directly from birds. In view of such scientific background, we are developing a method for screening sick birds by monitoring the physiological characteristics of birds in a contactless manner with sensors. Here, the movement of respiratory muscles and abdominal muscles under autonomic innervation was monitored using a magnet and Hall sensor sewn on the thoracic wall, and other multimedia devices. This paper presents and discusses the results of experiments involving continuous periodic noise discovered during flight experiments with a data logger mounted on a Japanese pheasant from 2012 to 2015. A brief summary is given as the below: 1. Magnet and Hall sensor sewn to the left and right chest walls, bipolar electrocardiograms between the thoracic walls, posterior thoracic air sac pressure, angular velocity sensors sewn on the back and hips, and optical reflection of LEDs (blue and green) from the skin of the hips allow observation of periodic vibrations(fasciculations) in the waves. No such analysis has been reported before. 2. These fasciculations are presumed to be derived from muscle to maintain and control air sac pressure. 3. Since each muscle fiber is spatially Gaussian distributed from the sympathetic nerve, the envelope is assumed to plot a Gaussian curve. 4. Since avian trunk muscles contract periodically at all time, we assume that the sympathetic nerve dominates in their control. 5. The technique of sewing a magnet to the thoracic wall and measuring the strength of the magnetic field with a Hall sensor can be applied to screen for early stage of avian influenza, with a sensor attached to the chicken enclosure.

Diffraction Properties from Periodic Slot Array in the Upper Wall of Parallel Plate Waveguide (평행평판 도파관의 윗면에 위치한 주기적인 슬롯 배열에 의한 전자파의 회절특성)

  • Park Jin-Taek;Hong Jae-Pyo;Ko Ji-Whan;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.311-318
    • /
    • 2005
  • Periodically perforated slot structure in the upper wall of the parallel plate waveguide is analyzed with main interest focusing on the diffraction Properties. The Periodic slot array is of infinite extent in one direction and of finite extent in the other direction. Various numerical results for reflection from the slotted section and transmission beyond the slotted section, and the radiation through the slotted section into the upper half space are presented with the height of feeding parallel plate waveguide, single slot size, and the periodicity between slots as parameters. This study is thought to be helpful to the design of the ventilation hole in the TFT-LCD and PDP.

A Study on the Typology and the Characteristics of the Architectural Zenithal Opening -Focused on the Inflow Methods of the Zenithal Light- (천창의 유형및 특성에 관한 연구 -빛의 유입 방법을 중심으로-)

  • Ryu, Joohi;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5619-5626
    • /
    • 2015
  • The zenithal light is the one that is entered down into the interior space or the spaces such as the inner court, through windows high located in the wall or openings of the roof. The aim of this study is to analyze the types of mechanism for the zenithal light by studying some examples related to the zenithal opening, and to investigate those characteristics. One of the most important features is a structural unit of the skylight entering the room. In this study, according to the structural unit, the direct light type, the duct-type and the shade type was distinguished, and each type can be divided into several modified types. Precisely, the direct light type is divided into an unexposed type and an exposed type of the source of light. The duct type is also divided into an intensive duct type and a distributed duct type. The shade type is classified into a ceiling surface shade, a reflections objet shade, a double ceiling shade and a wall shade.

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

A Study on the Spatial Characteristics in the Tugendhat House (투겐타트 주택의 공간적 특성에 관한 연구)

  • 양재혁;견진현
    • Korean Institute of Interior Design Journal
    • /
    • no.40
    • /
    • pp.42-51
    • /
    • 2003
  • This study aimed at understanding the spatial characteristics in the Tugendhat house. For this study, it is need to analyze the early plans of the Tugendhat house design process. To analyze this, the study leads to how to effect on the real practice with the process. Therefore, this research investigates the conceptional design process of the house. There are 2 main characteristics of the interior space alternation. One is the closed spatial character on the 2nd floor, the other is the open spatial character on the 1st floor. It clearly shows the severance between interior and exterior on the 2nd floor. Each 2nd floor's space volume uses different materials so that each the space can show the individuality. On the 1st floor, however, it seems the interior is not as much open to the exterior, because the materiality and reflection of the glass, the objet of furniture and wall. In case of 1st floor, it has a complex concept as open and close character, because it is using the proper gardening elements and the relationship between the house and site. The exterior characteristic is separated the house from the ground with the podium and the slope, and this leads to have the discontinuity. The house clearly shows the spatial characteristics of the continuity and discontinuity, it proves that Mies tried to move onto modem architecture as a turning point.

Implementation and Evaluation of 2D Ray-Tracing Technique for Indoor Propagation Characteristics Modeling (실내 전파특성 모델링을 위한 2차원 광선추적법 구현 및 평가)

  • Jeong, Seung-Heui;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.454-460
    • /
    • 2007
  • In this paper, we implemented a ray-tracing simulator with a ray-launching technique and generated the propagation path of each ray in an multiple-wall indoor environment. In this simulator, we adopted two dimension ray-tracing techniques considering the reflection and penetration were dominant propagation factor in the indoor channel. From the result, we verified that this ray-tracing simulator shows the similar pattern and delay distribution with the experiment results of the previous research.

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Numerical and Experimental Simulation of Directional Waves in Towing Tank (예인수조에서 방향스펙트럼파의 수치적 및 실험적 재현)

  • Y.K. Chung;J.H. Lee;H.H. Chun;D.D. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • Based on the linear potential theory with the side wall reflection. the directional spectrum waves are numerically simulated by a source distribution method and these together with long-crested irregular waves are also generated at the towing tank of Pusan National University by considering the transfer function of the wave maker obtained from the regular waves. In the numerical simulation, the characteristics of the directional spreading function are investigated by changing the breadth of the wave-maker unit. the width of the towing tank and the wave period. In the experimental generation, the statistical properties and the power spectrums of the long-crested irregular and directional waves are compared along the towing tank length. The directional spreading functions are also investigated at various positions in the tank.

  • PDF

Characterization of Transmission Properties of Two Common Interior Walls at UHF Bands (실내벽의 UHF 대역 전파 투과 특성 해석)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1876-1884
    • /
    • 1999
  • The next generation of wireless LAN AND PBX systems will make use of the unlicensecd band at 2.5 GHz. Deployment of these systems inside buildings requires and understanding of propagation characteristics within buildings. Because the wavelength is small compared to building dimensions, ray methods can be used to predict propagation, but they require knowledge of the transmission and reflection properties of walls. This paper reports on transmission measurements made at walls made of gypsum board on metal studs, and at concrete block walls using directive antennas. The measurements are found to give good agreement with theoretical results that account for the periodic nature of the wall structure.

  • PDF