• Title/Summary/Keyword: Wall pile

Search Result 208, Processing Time 0.031 seconds

Numerical Study for Application of Sheet Pile Retaining Wall Reinforced with H-pile (H-pile로 보강된 Sheet pile 흙막이 벽체의 적용을 위한 수치해석)

  • Cho, Kwangjun;Jun, Sanghyun;Suh, Jeeweon;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.23-33
    • /
    • 2015
  • This paper is results of numerical study for application of sheet pile retaining wall reinforced with H-pile as sheet piles are needed in field for a cutoff wall and are limited to use because of driveability in the ground condition of having a larger strength than a weathered rock. Extensive 101 cases of numerical approach were conducted to investigate the behavior of sheet pile retaining wall reinforced with H-pile, changing installing members of two types of sheet pile and three types of H-pile, the embedded depth of sheet pile and H-pile, the horizontal space between H-piles and excavation conditions. As the results of numerical analysis, combined use of the sheet pile SP-IIIA with H-Pile H250 and the sheet pile SP-IV with H-Pile H350 among precast products was found to be efficient since two members tended to reach allowable stresses simultaneously or have similar stress concentration ratios. Increased stiffness in reinforced sheet pile showed reduction of lateral displacement of wall. Embedded depth of sheet pile did not affect stability of wall significantly so that driving the penetrable depth of sheet pile should be enough to maintain stability of wall and satisfy purposes of cutoff and stiffness increase of wall.

A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile (횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구)

  • Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.35-43
    • /
    • 2012
  • Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

A Study on Flexural Rigidity of Two-row Overlap Pile Wall for Deep Excavation Support (대심도 굴착면 지지를 위한 2열 겹침말뚝의 휨 강성에 관한 연구)

  • Choi, Won-Hyuk;La, You-Sung;Kim, Bum-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • Two-row Overlap Pile wall is a novel retaining wall system with high flexural rigidity and waterproofing for deep excavation support currently being developed in Korea. The Two-row Overlap Pile wall is constructed by making an overlap between consecutive four-axis (or two-axis) auger piles which themselves are overlapped and arranged in zigzag manner. In this study, the flexural rigidity of the Two-row Overlap Pile wall, including the effect of cross-sectional shape, was examined using both theoretical and numerical approaches. The results of investigation suggested that the Two-row Overlap Pile wall formed with two-row piles exhibit greatly higher flexural rigidity than conventional one-row pile walls such as Cast in place pile (CIP) and Secant pile wall (SPW), whereas the effect of overlap length between piles on the flexural rigidity is relatively minimal.

A Field Case on the Pilot Constructions and Changes of a Braced Cut Wall in a Coastal Filled Land (해안매립지반에서의 토류가시설 시험시공 및 변경사례)

  • Hwang, Young-Chul;Kim, Ki-Rim;Kim, Yeon-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.46-55
    • /
    • 2006
  • There are many kinds of braced cut wall methods as the sheet pile, SCW, CIP and slurry wall which is adoptable for a deep excavation construction in a coastal filled land. The braced cut wall which has a strong stiffness is very stable but it has the weak point that the construction cost is high. Thus when a braced cut wall is designed, the geotechnical engineers choose the braced cut wall which has more safe and economic in the consideration of surrounding buildings near the construction site. Especially, when the sheet pile method as a braced cut wall is cheesed, the layer order and consistence of a coastal deposit stratum are considered and the pile driving method is also considered. This paper introduces the case that the originally box-type sheet pile wall was changed to U-type and high strength material after the pilot test at the subway construction site in a coastal filled land. This paper also introduces the case that the sheet pile's driving method was changed to special method in the section of the temporary coffer dam which had made when the present coastal filled land was formed.

  • PDF

The Analysis of Pile Bridge Abutments on Soft Clay for Loading from Lateral Soil Movement (연약지반상에 측방유동을 받는 교대말뚝기초의 거동분석)

  • Lee, Song;Kang, Dae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • Pile Bridge Abutments constructed on a soft base are affected by a lateral flow. Laterl flow pressure acting on Pile is very difficult to calculate because of, interation of ground and Pile. So, it is different to estimate displacement of Pile Bridge Abutments. This paper studied about possibility of the displacement estimation of Pile Bridge Abutments by using the equivalent sheet pile wall theory that was Randolph proposed in 1981. Analysis program through using the SAGE CRISP that is FEM program. Analysis data used Centrifuge test results of Springman(1991), Bransby(1997) and Ellis(1997)'s paper. In conclusion, maxium displacement that is carried out by centrifuge test and numerical analysis has occured at the head of pile, as well as Maximum displacement of pile is closely similar. But the moment acting on pile of numerical analysis is under estimated compare to the centrifuge test. Through the comparative study, it is found that displacement estimation by equivalent sheet pile wall is in relatively good agreement with the results of centrifuge test.

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

An Experimental Study on Lateral Load Resistance of a Wall Structure Composed of Precast Concrete and H-Pile (H 파일과 프리캐스트 콘크리트로 형성된 벽체의 횡저항성능에 대한 실험적 연구)

  • Seo, Dong-Joo;Kang, Duk-Man;Lee, Hyun-Gee;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.9-17
    • /
    • 2020
  • The purpose of this study was to evaluate lateral load resistance of a wall structure composed of precast concrete wall and H-Pile. This type of structure can be used for noise barrier foundation or retaining wall. Mock-up specimens having actual size were designed and fabricated. The lateral design load is 54.6kN. The H-pile length for the test specimen is 1.5m for simulating behavior of actual wall structure has 6.5m H-pile in the field, which is determined from theoretical study. Lateral displacements and strains of wall and H-pile were monitored and cracking in precast concrete wall inspected during the test. Load and deformation capacity of test specimens was compared with design capacity. The comparisons demonstrated that this type of structures, precast concrete wall and H-pile, can resist enough to lateral design load.