• Title/Summary/Keyword: Wall paper

Search Result 2,987, Processing Time 0.033 seconds

Service Life Assessment and Restrain Methods of Carbonation Attack on PC Outer Wall of LNG Storage Tanks (탄산염해에 대한 LNG 저장탱크 PC 외부벽체의 수명평가 및 억제방안)

  • Lee, Seung-Rim;Song, Il-Hyun;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • The objective of this paper is to assess the service life and retrain methods of specimens, which were subjected to carbonation attack, obtained from mix proportion of Sam-cheok LNG storage tank under construction. As the results, accelerated-carbonation penetration depths of 7, 28, 56 ages indicated 4.45, 9.19, 13.37mm, and even considering for cover depths of steel of LNG storage tank under real operation, it was enough. In addition, with carbonation velocity coefficient calculated by carbonation penetration depths, the service life to design cover depth(70, 80, 90, 100mm) of PC outer tank of LNG storage tank was 779, 1017, 1287, 1589 years and 466, 609, 771, 951 years, respectively, considering the $CO_2$ concentration in air which account for the 0.03% and 0.05%. Also, the restrain methods to carbonation attack were feasible through controlling the factors affecting the changes of hydration products such as $Ca(OH)_2$, ion composition in pore solution and matter mobility of organization structures within hardened concrete.

Characteristics of Shear Waves in Controlled Low Strength Material with Curing Time (양생시간에 따른 유동성 채움재의 전단파 특성)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The ultrasonic waves for monitoring concrete materials have been used to investigate the setting and hardening process of concrete. This paper presents the application of bender elements for monitoring the hardening properties of Controlled Low Strength Material (CLSM) and the characterization of shear waves in CLSM according to curing time. To ensure the early age properties and flow, the CLSM consists of CSA cement, sand, silt, water, fly ash, and accelerator. In addition, three different type specimens according to fine contents are mixed. A couple of bender elements are installed at the wall of measurement cell and the CLSM specimen are prepared at the measurement cell for 28 days. Experimental results show that the resonant frequency and shear wave velocities increase with an increase in the curing time, regardless of the fine contents. Up to ten hours, the amplitudes of shear waves also increase, and the resonant frequency and shear wave velocities at the same time increase as the fine contents increase. The shear wave measurement technique using the bender elements may be effectively used to evaluate the hardening properties of CLSM along the curing time.

Constructability Analysis in Aged-Housing Remodeling Demolition Work for Maximizing Waste Recycling (폐기물 재활용성 향상을 위한 리모델링 철거공사의 시공성 평가 및 사례적용)

  • Chae, Seong-Hyun;Kim, Ki-Hyun;Cha, Hee-Sung;Kim, Kyung-Rai;Han, Ju-Yeoun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2010
  • From now on, the aged apartment or house is expected to increase rapidly. So, we have to build a process of remodeling and develop the new technique. Demolition work is needed for systematic plan and management. However, contractors of the remodeling project established a rough plan and did not consider recycling wastes, safety of workers and structural stability of building. Therefore, we need a step to develop a assessment system, verify and make specified. This paper evaluated how much improve on construction speed, work efficiency, intensity of work and influence with another process comparing the existing method with the new demolition method. The qualitative and quantitative assessment system are developed with these output. The case study was carried out experimental group and control group, based on developed assessment system, which have the same condition. The existing method was made up of 3 steps- 1)Demolish windows, doors and iron goods, 2)Demolish indoor and outdoor walls, 3)Drop the waste. The new demolition method was made up of 5 steps- 1)Demolish windows, doors and iron goods, 2)Demolish the ceiling and wall's finishing materials, 3)Demolish the floor's finishing materials, 4)Demolish indoor and outdoor walls, 5)Drop the waste. Work time, idle time, the character of a work unit are analyzed by mock-up test. This study's output is expected to establish a systematic process of new demolition method and based on the maximizing waste recycling work in our construction industry.

Sensitivity Analysis of Energy Efficient Refurbishment Strategies for Detached Houses in Three Climate Zones (지역별 단독주택 에너지 절감 리모델링 전략 민감도 분석)

  • Lee, Byungyun;CHEN, HAICHAO
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.518-527
    • /
    • 2020
  • The establishment of a green remodeling strategy is focused on technology, so the necessity of establishing a customized strategy considering the field situation has emerged. This paper examined the technology strategy through sensitivity analysis as a methodology for guiding strategy. For a 90-square-meter detached house, nine models of the construction standards of pre-1980s, 1984, and 2010 in Seoul, Daejeon, and Busan were assessed using the optimization method that combines the energy plus engine and the ModeFrontier. Sensitivity analysis was performed, and the remodeling strategy priority was derived. For pre-1980 models, the strategy for enhancing the roof insulation performance had a significant priority. The SHGC values of the windows were found to have the next highest priority regardless of the region and the time of completion, showing that the performance standard, including the SHGC, needs to be expanded. The possibility of remodeling while maintaining the existing geometry was confirmed because the adjustment of the window wall ratio accompanying large-scale demolition works has low priority. The priorities of technology strategies in each case showed very different patterns, suggesting the possibility of establishing a remodeling strategy by a comprehensive evaluation along with economics and constructability analysis.

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

A Study on Thermal Performance of Plate Cooler for Cooling Medium Speed Engine Lubricant Oil (선박용 중속엔진 오일냉각용 판형쿨러의 전열성능에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Plate heat exchangers(PHE) have been commercialized since the 1920s. Since then, although the basic concept of PHEs has changed little, its design and construction have progressed significantly to accommodate higher temperatures, higher pressures, and large heat exchanging capacities. The development trend of PHEs is consistent with heat plate developments with better thermal efficiency, lower pressure drop, and good flow distribution. The purpose of this paper is to introduce the main development processes of a plate cooler for medium-speed engine lubricant oil cooling in vessels which is in line with the development trend of PHEs and to provide its thermal performance data that were found out during experimental tests. The plate cooler in this study cannot measure the wall temperatures directly due to its structural characteristics, so the heat transfer coefficients were calculated using the modified Wilson Plot method. The water-to-water tests were first conducted experimentally to figure out the characteristics of heat transfer coefficients and pressure drops on the water side and then the water-to-oil tests followed to obtain the heat transfer coefficients on the oil side. The test results showed that heat transfer coefficients and pressure drops on both water and oil side increased with flow rates, and it was also found that all the development targets of the plate cooler in this study were achieved successfully.

Sequential Changes of Pericarp Ultrastructure in Citrus reticulata Hesperidium (Citrus reticulata 감과 과피 내 미세구조 변화)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.79-92
    • /
    • 2003
  • Ultrastructural changes of the pericarp in Citrus reticulata has been investigated during hesperidium abscission. The pericarp was composed of compactly arranged parenchyma cell layers during early stages of fruit development. The outermost exocarp was green and active in photosynthesis. However, cells in the exocarp soon changed into collenchyma cells by developing unevenly thickened walls within a short time frame. As the fruit approached maturation, the chlorophyll gradually disappeared and chloroplasts were transformed into carotenoid-rich chromoplasts. In the mature fruit the exocarp consisted of large, lobed collenchyma cells with primary pit fields and numerous plasmodesmata. The immature mesocarp was a relatively hard and thick layer, located directly under the exocarp. With development, the deeper layers of the exocarp merged into the white, spongy mesocarp. Before separation of the hesperidium from the plant, some unusual features were detected in the plasma membrane of the exocarp cells. The number of small vacuoles and dark, irregular osmiophilic lipid bodies also increased enormously in the exocarp collenchyma after the abscission. They occurred between the plasma membrane and the wall, and invaginated pockets of the plasma membrane containing double-membraned vesicles were also frequently noticed. The lipid bodies in the cytoplasm were often associated with other organelles, especially with plastids and mitochondria. The plastids, which were irregular or amoeboid in shape, contained numerous large lipid droplets, and occasional clusters of phytoferritin, as well as few loosely -oriented peripheral lamellae. Myelin-like configurations of membrane were frequently observed in the vacuoles, as was the association of lipid bodies with the vacuolar membrane. Most vacuoles had an irregular outline, and lipid bodies were often connected to the tonoplast of the vacuoles. The structural changes underlying developmental, particularly to senescence, processes in various hesperidium will be reported in the separate paper.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

Anatomical Characteristics of Kenaf Grown in Reclaimed Land - Volumetric Composition and Cell Dimension - (간척지에서 재배된 양마(kenaf)의 해부학적 특성(II) - 구성 비율 및 세포의 치수 -)

  • Lee, Seon-Hwa;Kwon, Sung-Min;Um, Gi Jeung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • Anatomical characteristics of volumetric composition, fiber length, vessel diameter, and crystalline properties of cellulose in kenaf (Hibiscus cannabinus L.) planted in the reclaimed land of Buan-si, Korea were examined to understand the growth characteristics using a light microscopy and an X-ray diffraction method. The samples of kenaf were taken from six positions (3 cm, 35 cm, 70 cm, 105 cm, 280 cm, and 320 cm) of each stem over the growth period (July, August, September, and October) after seeding in the mid-May. In the kenaf stem, phloem constituted 10 to 15 %, xylem 66 to 82%, and pith 7 to 19%. The ray, bast fiber, and remainder comprised 50%, 20%, and 30% of the phloem, respectively. The volume of vessel, ray, and fiber in the xylem was approximately 10, 15, and 75%, respectively. The proportion of cell wall was 30.92% at the base of stem and 46.40% at the top of stem, respectively. The average length of bast fiber and xylem fiber was about 2.8 mm and 0.9 mm, respectively. Radial and tangential diameters of vessel increased with the increase of growth period, while they decreased with increasing the stem height. Relative crystallinity ranged from 70 to 79% in phloem and from 50 to 56% in xylem. Cellulose crystallite width was about 3 nm both in the phloem and xylem. Thus, the volumetric composition and cell dimensions in the phloem and xylem appeared to be varied with the growth period and the stem height.