• 제목/요약/키워드: Wall paper

검색결과 2,978건 처리시간 0.028초

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.

급수가열기 추기노즐의 개선된 충격판 모델에 관한 연구 (A Study on Advanced Impinging Baffle Model in Extraction Nozzle of a Feedwater Heater)

  • 이우;황경모;김경훈
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.18-29
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

  • PDF

ALC 패널을 활용한 건축물 외장 커튼월에 대한 Mock-up Test 성능 평가 연구 (Performance Evaluations of Mock-up Tests for ALC Panel Curtain Wall in Building Exterior)

  • 김영호;이용수
    • 한국디지털건축인테리어학회논문집
    • /
    • 제13권4호
    • /
    • pp.25-32
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the exterior materials or curtain wall system. The curtain wall system is a element that come to insulated portions of building envelope that results in heat loss. The purpose of this paper is to carried out mock-up tests for exterior wall used in autoclaved lightweight concrete panels in green building practices. Mock-up test execute a mixed process between standard test procedure and complex test procedure based on AAMA 501(American Society for Testing and Materials) and ASTM 283, ASTM 330(American Society for Testing and Materials). In results, tests meet the requirements that grant values in steps of procedures provided on ASTM and AAMA. ALC panel is suitable for a exterior wall product to be gratified thermal cycling performance and structural capacity, deflection(H/200) and lateral displacement(H/50), for curtain walls.

다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구 (Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC))

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 한계하중 (I) - 내압 - (Plastic Limit Loads of 90° Elbows with Local Wall Thinning using Small Strain FE Limit Analyses (I) - Internal Pressure -)

  • 안중혁;김종현;홍석표;박치용;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.586-593
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbow with local wall thinning at extrados under internal pressure. This work was performed using 3-dimensional, small strain FE analyses based on elastic-perfectly plastic materials. The wide range of elbow and local wall thinning geometries are considered. For systematic analyses for effect of axial thinning extent on limit loads, two limiting cases are considered; a sufficiently long thinning, and the circumferential part-through surface crack. Then, the closed-form plastic limit load solutions for intermediate thinning are obtained by using result of two limiting cases. The effect of axial thinning extent for elbow on plastic limit load is highlighted by comparing with that for straight pipes. Although the proposed limit load solutions are developed for the case when local wall thinning exist in the center of elbow, it is also shown that they can be applied to the case when local wall thinning exists anywhere within elbow.

옥상설치 냉각탑에서의 토출공기 재유입량 예측 (Prediction of the Individual Reentering Rate of a Cooling Tower within it'S Bank Installed on Building Roof)

  • 문선애;허진혁;최충현;이강순;이재헌;유호선;이태구
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, the individual reentering rate of the cooling towers installed on a building roof is investigated considering the wind direction and louver wall installation. As the western wind with 5 m/s flows and the louver wall is not installed around the roof. the reentering rate of the cooling towers is predicted about 20%. However the reentering rate is simulated about 5% when the louver wall is installed around the roof. As the southern wind with 5 m/s flows and the louver wall is not installed, the reentering rate of the cooling tower is predicted about 30%.On the contrary, the reentering rate is simulated about 15% when the louver is installed. As a result, if there is no louver wall installed around the roof, the falloff of the cooling capacity would be serious by the reentering of the discharge air. The installation of the louver wall is strongly recommended to prevent the discharge air reentering.

  • PDF

IMPROVEMENT OF CUPID CODE FOR SIMULATING FILMWISE STEAM CONDENSATION IN THE PRESENCE OF NONCONDENSABLE GASES

  • LEE, JEHEE;PARK, GOON-CHERL;CHO, HYOUNG KYU
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2015
  • In a nuclear reactor containment, wall condensation forms with noncondensable gases and their accumulation near the condensate film leads to a significant reduction in heat transfer. In the framework of nuclear reactor safety, the film condensation in the presence of noncondensable gases is of high relevance with regards to safety concerns as it is closely associated with peak pressure predictions for containment integrity and the performance of components installed for containment cooling in accident conditions. In the present study, CUPID code, which has been developed by KAERI for the analysis of transient two-phase flows in nuclear reactor components, is improved for simulating film condensation in the presence of noncondensable gases. In order to evaluate the condensate heat transfer accurately in a large system using the two-fluid model, a mass diffusion model, a liquid film model, and a wall film condensation model were implemented into CUPID. For the condensation simulation, a wall function approach with a heat/mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model, and then introduces the simulation result using the improved CUPID for a conceptual condensation problem in a large system.

Advanced Structural Silicone Glazing

  • Kimberlain, Jon;Carbary, Larry;Clift, Charles D.;Hutley, Peter
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.345-354
    • /
    • 2013
  • This paper presents an advanced engineering technique using finite element analysis to improve structural silicone glazing (SSG) design in high-performance curtain wall systems for building facade. High wind pressures often result in bulky SSG aluminum extrusion profile dimensions. Architectural desire for aesthetically slender curtain wall sight-lines and reduction in aluminum usage led to optimization of structural silicone bite geometry for improved stress distribution through use of finite element analysis of the hyperelastic silicone models. This advanced design technique compared to traditional SSG design highlights differences in stress distribution contours in the silicone sealant. Simplified structural engineering per the traditional SSG design method lacks accurate forecasting of material and stress optimization, as shown in the advanced analysis and design. Full scale physical specimens were tested to verify design capacity in addition to correlate physical test results with the theoretical simulation to provide confidence of the model. This design technique will introduce significant engineering advancement to the curtain wall industry and building facade.

복합하중이 작용하는 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Wall-Thinned Pipe Under Combined Loading)

  • 심도준;김윤재;김영진;박치용
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1399-1406
    • /
    • 2005
  • Recently authors have proposed a new method to estimate failure strength of a pipe with local wall thinning subject to either internal pressure or global bending. The proposed method was based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region, and the simple scheme to estimate the equivalent stress in the minimum ligament was proposed, based on the reference stress concept. This paper extends the new method to combined internal pressure and global bending. The proposed method is validated against FE results for various geometries of local wall thinning under combined loading. The effect of internal pressure is also investigated in the present study. Comparison of maximum moments, predicted according to the proposed method, with published full-scale pipe test data fur locally wall-thinned pipes under combined internal pressure and global bending, shows good agreement.

농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석 (Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure)

  • 신방응;오세욱;권영철
    • 한국농촌건축학회논문집
    • /
    • 제2권2호
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF