• Title/Summary/Keyword: Wall paper

Search Result 2,978, Processing Time 0.029 seconds

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Field Measurements of Cantilever Wall with Unattached Strips in the Backfill (뒷채움 지반에 비정착식 띠보강재를 설치한 역T형 옹벽의 현장 계측)

  • 이종구;이만수;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.87-94
    • /
    • 2000
  • This paper concerns the distribution of earth pressures on a cantilever wall with unattached reinforcements in the backfill. This type of walls is different from the existing reinforced earth walls in that unattached reinforcements are placed in the backfill of rigid retaining wall such as gravity wall and cantilever wall, instead of connecting reinforcements to the wall segments. Two large-scale prototype tests have been carried out with a 4m high cantilever wall; one with unreinforced backfill, the other with unattached strips in the backfill. The reinforcing effect of unattached strips are discussed based on the earth pressure distribution measured in two large-scale prototype tests. Also, the comparison between measured and predicted earth pressure on a wall with unattached strips are discussed herein to confirm the validity of analytical prediction.

  • PDF

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric

  • Yuksel, Suleyman B.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.133-141
    • /
    • 2019
  • The aim of the present paper is to present the cyclic behavior of strengthened reinforced concrete shear wall test specimen, which was reinforced with cold drawn welded wire mesh fabric. Two reinforced concrete shear wall specimens have been tested in the present study. The walls were tested under reversed cyclic loading with loading applied near the tip of the walls. The control wall is tested in its original state to serve as a baseline for the evaluation of the repair and strengthening techniques. The two test specimens include a control wall and a repaired wall. The control wall test specimen was designed and detailed to simulate non-ductile reinforced concrete shear walls that do not meet the modern seismic provisions. The response of the original wall was associated with the brittle failure. The control shear wall was repaired by addition of the reinforcements and the concrete and then it was reloaded. The effectiveness of the repair technique was investigated. Test results indicate that there can be a near full restoration of the walls' strength. The data from this test, augmenting other data available in the literature, will be useful in calibrating improved analytical methods as they are developed.

STUDY OF NEW CAST-IN-PLACE MORTAR WALL FOR HOUSE CONSTRUCTION COMPARED TO BRICK AND MORTAR-BLOCK SYSTEM (A SIMULATION IN DIFFERENT AREAS)

  • Arief Setiawan Budi Nugroho;Shin-ei Takano
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.196-202
    • /
    • 2009
  • Study from Yogyakarta earthquake reconstruction program, cast-in-place wall using fix-size formwork system (Old-CIP) has offered a good alternative for house construction. A simulation has also confirmed that this system using mortar as the main material can provide cheapest cost and lowest total man power compared to conventional wall construction technique: brick or mortar-block wall. This paper presents the new wall construction technique: full size cast-in-place wall (New-CIP). The detail of how this new technique implemented is described. In addition, considering that material and labor cost in one area is different to others, cost analysis for different resources prices and wages of three cities are taken into a simulation. The analysis is aimed to distinguish the implementation feasibility of New-CIP system compared to the four common wall systems. Finally, its implementation resistance is also discussed.

  • PDF

Decision of the Margin of the Sustain Voltage Based on the Wall-Charge Distribution (AC PDP의 벽전하 분포를 이용한 유지 펄스의 전압 마진 결정)

  • 하영석;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.77-80
    • /
    • 2000
  • This paper describes a new method to decide the margin for the sustain voltage of AC PDPs based on the wall-charge distribution. We model the discharge cell and measure the wall-charge when sustain pulses are applied to the AC PDP. The measured wall-charge distribution informs us of the voltage forming the maximum wall-charge which should be chosen as the sustain voltage.

  • PDF

Following a Wall by an Mobile Robot with Sonar Sensors and Infrared Sensors (초음파센서와 적외선센서를 갖는 이동로봇의 벽면 따르기)

  • 윤정원;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.423-423
    • /
    • 2000
  • This paper proposes an effective algorithm for following a wall by an autonomous mobile robot with sonar sensors and infrared sensors in an indoor environment. The proposed method uses deadreckoning to estimate the current position and orientation of a mobile robot. Sonar sensor data are used to estimate shape and position of wall using proposed algorithm. Infrared sensor data are used as assistant when sonar sensor data is uncertain. Simulation results using mobile robot show that the proposed algorithm is proper for the following wall.

  • PDF

Thermal Analysis of Wall/Floor Intersections in Building Envelope

  • Ihm, Pyeongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2004
  • Wall/floor intersection is important parts of a building envelope system. These intersections can be sources of thermal bridging effects and/or moisture condensation problems. This paper provides a detailed analysis of the thermal performance of wall/floor intersection. In particular, two-dimensional steady-state and transient solutions of the heat conduction within the wall/floor joint are presented. Various insulation configurations are considered to determine the magnitude of heat transfer increase due to wall/floor joint construction.

Effects of Data-hold Methods on Stability of Haptic System (데이터 홀드 방식에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • This paper presents the effect of data-hold methods on stability of haptic system with a virtual wall. When a human operator interacts with virtual wall, the lager the stiffness of the virtual wall is, the more realistic the operator feels that the virtual wall is. However, if the stiffness of the virtual wall becomes extremely large, the system may be unstable. When a virtual wall is designed, it is necessary to analyze the maximum available stiffness to guarantee a stable haptic interaction. The simulation model in this paper is developed based on the haptic device model, sampler, a virtual wall model, and data hold methods to compute the maximum stiffness for stability. The effectiveness of the simulation is evaluated through comparing the results of previous studies with the results of this simulation. In addition, the effects of two data hold methods, that is, zero-order hold (ZOH) and first-order hold (FOH) on the stability are analyzed and the values of the maximum available stiffness are compared through the simulation.

  • PDF