• Title/Summary/Keyword: Wall motion

Search Result 595, Processing Time 0.182 seconds

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.

Sway Added Mass of a Rectangular Cylinder in a Restricted Water

  • Hwang, J.H.;Rhee, K.P.;Kang, C.K.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.3-14
    • /
    • 1982
  • In this paper, the sway added mass of a rectangular cylinder in a restricted water is considered by applying Hamilton's principle as the frequency tends to zero. The present method is an extension of Isshiki's method proposed in 1978. In the present method, it is assumed that the fluid velocity distribution in each subdomain of the fluid can be represented by higher order polynomials while Isshiki assumed linear velocity distribution. The fluid flow is assumed as a rotational motion in the present analysis. However, the results obtained from the present method show good agreement with Bai's numerical results for the case of large clearances between a canal wall and a cylinder. From Kelvin's minimum energy theorem, we can see that the value of sway added mass obtained from the present method approaches the upper bound. The approximate formula obtained in the present study takes a simple form which consists of the dimensions of the canal and the cylinder. The present formulae are derived for the cases of a rectangular cylinder swaying at the center of a narrow or wide canal relative to a cylinder, at off-center location in a canal, and in the restricted water with a single wall. From the results of numerical calculation, it is concluded that the sway added mass in restricted waters is more affected by water depth than clearance between a wall and a cylinder.

  • PDF

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Performance evaluation method for wall-climbing robots and its application (외벽등반 로봇의 성능평가 방법 및 응용)

  • Kim, Jin-Man;Kim, Heon-Hui;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.62-69
    • /
    • 2017
  • This paper presents a methodology for evaluating the performance of wall-climbing robots. In the literature on wall-climbing robots, there is little information on indices and evaluation methods for consistent and exact performance. Because various types of wall-climbing robots can be developed with regard to adherence and locomotion, a general method of measuring their performance regardless of type is needed. Therefore, we propose two major performance indices-the vertical adhering weight and vertical climbing speed-and their stepwise evaluation procedures. To verify the effectiveness of the proposed method, we applied it to a hull-climbing robot that we previously developed. The target robot was evaluated to have a vertical adhering weight of 18.5 kg through a slip measurement procedure and a vertical climbing speed of 41 cm/s with a position control system.

Analysis of Patellar Tracking and Q-angle During Semi-Squat Exercises (반 쪼그려 앉기(Semi-Squat) 운동 시 무릎뼈 주행(Tracking)과 Q-각도 분석)

  • Park, Seung-Kyu;Yang, Dae-Jung;Park, Jae-Man;Han, Song-E
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • Closed kinematic chain exercises such as squatting have been widely indicated for knee rehabilitation in patients with patellofemoral disorders such as osteoarthritis and patellofemoral pain. Patellofemoral disorders are thought to be associated with abnormal patellar kinematics. In addition, the Q-angle may be undervalued in patients with patellofemoral pain and a laterally displaced patella. The purpose of this study was to assess patellar kinematics and the Q-angle during double-leg semi-squat and wall-slide semi-squat exercises. In this study, 28 asymptomatic subjects(16 male, 12 female) were assessed. Patellar tilt, patellar spin, and Q-angle were recorded using a motion analysis system during double-leg semi-squat and wall-slide semi-squat exercises. The Q-angle and patellar tilt were significantly increased, whereas patellar spin was significantly decreased, at $45^{\circ}$ of knee flexion compared with $0^{\circ}$. No differences were observed for the Q-angle, patellar tilt, and patellar spin during double-leg semi-squat and wall-slide semi-squat exercises. However, a significant interaction was observed between squat type and knee angle for patellar spin. We found that the patella is laterally tilted during semi-squat exercises and that there was no difference in patellar tracking between knee flexion during double-leg semi-squat and wall-slide semi-squat exercises.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

Magnetic Domain Walls at the Edges of Patterned NiO/NiFe Bilayers (패턴된 이중박막의 자구벽 특성조사)

  • Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • The magnetic domain walls at the edges of a large patterned and exchanged-biased NiO(10-60 nm)/NiFe(10 nm) bilayers and their motions with applied field were investigated by magnetic force microscopy. Three kinds of domain walls, namely, head-to-head zig-zag and tail-to-tail zig-zag Bloch walls and straight Neel walls were found at specific edges of the unidirectional biased NiO(30 nm)/NiFe(10 nm) bilayer having the exchange biasing field (H$\sub$ex/) of 21 Oe. No walls were observed for the strong exchange-biased bilayer (60 nm NiO, H$\sub$ex/ = 75 Oe), while the amplitude of the zig-zag domain increased with decreasing exchange biasing. This may be explained by mutual restraint between H$\sub$ex/ and the demagnetization field of edge. We similarly investigated the magnetization reversal process, the subsequent motion of the walls and identified the pinning and nucleation sites during reversal.

A study on the heat transfer characteristics of swirling flow in a circular sectioned $180^{\circ}C$bend with uniform heat flux (균일 열플럭스가 있는 $180^{\circ}C$ 원형단면 곡관의 선회유동 열전달특성 연구)

  • Lee, Sang-Bae;Gwon, Gi-Rin;Jang, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.615-627
    • /
    • 1997
  • An experiment was performed to local heat transfer coefficient and Nusselt number in the circular duct of 180.deg. bend for Re=6*10$^{4}$, 8*10$^{4}$ and 1*10$^{5}$ at swirling flow and non-swirling flow conditions. The test tube with circular section was made by stainless which has curvature ratio 9.4. The wall of test tube was heated directly by electrical power to 3.51 kw and swirling motion of air was produced by a tangential inlet to the pipe axis at the 180 degree. Measurements of local wall temperatures and bulk mean temperature of air are made at four circumferential positions in the 16 stations. The wall temperatures show particularly reduced distribution curve at bend for non-swirling flow but this effect does not appear for swirling flow. Nusselt number distributions for swirling flow which was calculated from the measured wall and bulk temperatures were higher than that of non-swirling flow. Average Nusselt number of swirling flow increased about 90 ~ 100% than that of non-swirling flow whole through the test tube. The Nu/N $u_{DB}$ values at the station of 90.deg. for non-swirling flow and swirling flow are respectively about 2.5 and 4.8 at Re=6*10$^{4}$. Also that is good agreement with Said's result for non-swirling flow. flow.

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.