• 제목/요약/키워드: Wall microbes

검색결과 22건 처리시간 0.021초

Microbial Forensics: Human Identification

  • Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.292-304
    • /
    • 2018
  • Microbes is becoming increasingly forensic possibility as a consequence of advances in massive parallel sequencing (MPS) and bioinformatics. Human DNA typing is the best identifier, but it is not always possible to extract a full DNA profile namely its degradation and low copy number, and it may have limitations for identical twins. To overcome these unsatisfactory limitations, forensic potential for bacteria found in evidence could be used to differentiate individuals. Prokaryotic cells have a cell wall that better protects the bacterial nucleoid compared to the cell membrane of eukaryotic cells. Humans have an extremely diverse microbiome that may prove useful in determining human identity and may even be possible to link the microbes to the person responsible for them. Microbial composition within the human microbiome varies across individuals. Therefore, MPS of human microbiome could be used to identify biological samples from the different individuals, specifically for twins and other cases where standard DNA typing doses not provide satisfactory results due to degradation of human DNA. Microbial forensics is a new discipline combining forensic science and microbiology, which can not to replace current STR analysis methods used for human identification but to be complementary. Among the fields of microbial forensics, this paper will briefly describe information on the current status of microbiome research such as metagenomic code, salivary microbiome, pubic hair microbiome, microbes as indicators of body fluids, soils microbes as forensic indicator, and review microbial forensics as the feasibility of microbiome-based human identification.

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권11호
    • /
    • pp.1659-1676
    • /
    • 2002
  • Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

인삼뿌리의 적변현상과 근권미생물 (The Relationships between the Microorganisms and the Red-Colored Phenomena of Ginseng (Panax ginseng C.A. Meyer))

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • 제25권1호
    • /
    • pp.53-58
    • /
    • 2001
  • 적변삼과 건전삼 그리고 이들의 근권토양으로부터 분리한 토양세균과 적변현상과의 관계를 구명하고자 pH 변화와 철 이온에 따른 토양세균의 생장 특성을 조사한 결과, 분리된 모든 토양세균은 pH 3.0에서는 생장하지 못하였다. 그러나 RCG와 RCS는 2 mM Fe$^{3+}$ 가 포함된 배지에서는 pH 3.0에서도 생장하였다. 특히, RCG의 경우는 철이 포함된 배지에서는 철이 없는 배지보다 생장이 2배 정도 높았다. 적변삼의 뿌리에서 분리된 토양세균(RCG)은 pH 5.0에서 pH 9.0사이에서는 생장에 큰 차이가 없었으나, 건전삼의 근권토양에서 분리된 토양세균(HES)은 다른 곳에서 분리된 세균에 비해 생장이 낮았다. 적변삼의 근권토양에서 분리한 토양세균(RCS)과 표토에서 분리한 토양세균(SUS)의 생장은 pH5.0에서 pH 7.0과 pH 9.0에 비해 다소 낮았다. 분리된 모든 토양세균의 cellulase효소활성은 철이온이 포함된 배지에서 철이온이 없는 배지보다 2배 이상 높게 나타났다. 세포 외효소 활성은 세포 내 효소 활성보다 약 10 이상 높았고, pH5.0에서 RCS의 효소활성은 pH 7.0 보다 2배 이상 높았다. 특히, 2 mM Fe$^{3+}$ 가 포함된 배지에서 RCS의 세포 내 효소활성은 철이온이 없는 배지보다 6~7배 높았고 세포 외 효소의 경우에는 11~12배가 증가되었다. 이러한 결과는 인삼의 적변현상과 관련된 토양세균은 철이온의 산화환원과cellulase분비에 의한 세포벽 분해 그리고 인삼 표피세포에 철이온과 강력한 리간드를 형성하는 것으로 판단된다.

  • PDF

The Regulation of Root Hair-specific Expansin Genes

  • Cho, Hyung-Taeg
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.18-21
    • /
    • 2004
  • The root hair provides a major entering spot for the symbiotic legume rhizobia. It is obvious that dynamic cell wall modification occurs in the plant root hair during the early microbe invasion. Expansins are nondestructive cell wall-modifying proteins that are involved in cell growth and differentiation. Among about 40 expansin genes in Arabidopsis, two expansin genes are expressed specifically in the root hair cell. Orthologous genes of this Arabidopsis root hair expansins have been found in other Brassica members, rice, and Medicago truncatula (a legume). In this review, I discuss the probable function of expansins during the early symbiotic process between the root hair and microbes and the regulation of root hair expansin genes in a comparative approach.

혐기조건하 젖산균에서 알루미늄의 축적 (Accumulation of Aluminum to Lactic Acid Bacteria under Anaerobic Conditions)

  • 박성수
    • 한국식품영양학회지
    • /
    • 제11권6호
    • /
    • pp.600-605
    • /
    • 1998
  • Present study was investigate to evaluate the aluminum absorption effect on lactic acid bacteria(Lactobacillus acidophilus ATTC 4356, Lactogacillus bulgaricus ATTC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185 ; LAB) and Clostridium perfringens ATCC 3627 (CP) in artificial intestinal tract. Their growth rate, aluminum accumulation and cellular distribution was studied under anaerobic broth system. All of above microbes were inhibited by adding 10 to 100ppm of aluminum. The degree of aluminum in LAB (Lactobacillus acidophilus ATCC 4356, Lactobacillus bulgaricus ATCC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185) was higher than of CP. The largest amount of aluminum was accumulated in Lactobacillus bulgaricus ATCC 11842. Aluminum accumulation in LAB was distributed in 49.1% at cell wall, 27.3% at plasma membrane, and 23.6% at cytoplasm, respectively. This study suggests that LAB might help to eliminate the ingested aluminum in intestinal tract.

  • PDF

Yellow-colored mats in Jeju Island lava tubes

  • Kim, Jong-Shik;Kim, Dae-Shin;Lee, Keun Chul;Kim, Yong-Hwan;Ahn, Ung-San;Lee, Mi-Kyung;Lee, Jung-Sook
    • 한국응용과학기술학회지
    • /
    • 제36권4호
    • /
    • pp.1338-1348
    • /
    • 2019
  • The Geomunoreum Lava Tube System, declared as a UNESCO World Heritage Site, has a unique natural ecosystem. The information available about this ecosystem, which contains lava caves with secondary carbonate speleothems, is sparse. Hence, extensive research is warranted for establishing a conservation standard. We commenced microbial research on the system and have been studying the microorganisms coating the lava tube wall to acquire fundamental information for understanding the lava cave ecology of Jeju Island. Samples were collected from yellow-colored walls in six caves that are part of the system-the Bengdwi, Utsanjeon, Bukoreum, Manjang, Gimnyeong, and Yongcheon caves. This study focused on yellow walls as it is the most easily distinguished color. According to previous studies, the color of cave walls is attributed to microorganisms or their components. To determine whether the yellow mats from the Jeju lava tube walls are caused by microorganisms, we examined samples at the microscopic scale, by staining mats and analyzing bacterial isolates from glitter particles. As a result, we found that the yellow walls of lava tubes are comprised of microbial mats.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

하수오니에 왕겨 및 톱밥을 혼합한 호기성 퇴비화 (Aerobic Composting of sewage sludge Mixed Rice Hulls and Sawdusts)

  • 정봉수;강용태
    • 한국농공학회지
    • /
    • 제28권3호
    • /
    • pp.99-106
    • /
    • 1986
  • This study was carried out to investigate the effects of moisture content, temperature, C/N ratio and pH of the sewage sludge mixed with hulle and sawdusts for making compost under aerobic condition and to improve the defect of the structure of experimental equipment heat lose and handling method. and obtained results were as follows 1.The temperature was reached 73$^{\circ}$ C around 50 hours fermentation in the condition of 0.8 L/min. of air and 60.4% of moisture content. and favorable moisture content of initial condition ranged from 50 to 65% 2.The temperature near bottom of the batch composter was decreased due to evaporate water vapor and lose the heat produced during aeration. and it is required to be improved. 3.The temperature in the batch composter from the center to the inside wall surface was gradually decreased. the temperatures of the points located in r=9cm and the wall surface were 4$^{\circ}$ C and 6$^{\circ}$ C respectively. and therefore it is required to be insulated. 4. The maximum C02 production was obtained as 7.3% per volume in the temperature of 63$^{\circ}$C at the moisture content of 60% 5.The temperature range of active microbes growth was found to be as 20$^{\circ}$C to 40$^{\circ}$C in the case of mesophiles and 50$^{\circ}$C to 65$^{\circ}$C in the case of thermophiles due to increase and decrease C02 production. 6.C/N ratio after decomposition was 1.3 to 2.6 smaller than that of initial one due to increase the amount of nitrogen. The more C/N ratio increased. the less the reaction velocity decresed. The optimum of it as found to be 30. 7.pH values after decomposition were slightly increased than that of initial ones. The reaction velocity was decreased at acid and alkall condition. Therefore it is neseseary to neutralize the medium to improve the reaction.

  • PDF

Bacillus thuringiensis C25의 흰날개무늬병 Rosellinia necatrix에 대한 항진균 활성에 관여하는 유전자 특성 및 기능 유전체학적 연구 (Functional Genomic Analysis of Bacillus thuringiensis C25 Reveals the Potential Genes Regulating Antifungal Activity against Rosellinia necatrix)

  • 김강민;이화용;배원실;조민;류호진
    • 한국균학회지
    • /
    • 제47권4호
    • /
    • pp.417-425
    • /
    • 2019
  • 다양한 생물적 스트레스로부터 경제적으로 중요한 식물을 보호하기 위한 친환경 biocontrol agents (BCAs)는 오늘날 농업 및 생태 분야에서 다양하게 사용되고 있다. 다양한 BCAs 중에서, 많은 그람 양성Bacillus 속 아종이 친환경 생물학적 살충제 및 비료로서 성공적으로 산업화되었다. 이 연구에서 우리는 식물병원성 균류의 균사생장에 길항 효과를 보여주는 BCAs 중 하나인 Bacillus thuringiensis C25가 흰날개무늬병을 일으키는Rosellinia necatrix에 대한 길항작용이 있음을 확인하였다. 주사전자현미경을 통해B. thuringiensis C25가R. necatrix의 균사 세포벽을 분해하여 균사생장을 억제하는 것을 확인하였다. B. thuringiensis C25의 전장 유전체에서 5,683 유전자 세트의 서열을 동정하였고, 잠재적으로 곰팡이 세포벽 분해 효소 (CWDE)를 암호화하는 유전자 세트를 선발하였다. R. necatrix에 대한 균사성장 억제효과는B. thuringiensis C25의 균사 세포벽 분해 유전자의 전사 활성과 높은 상관 관계가 있었다. 상세하게는, B. thuringiensis C25에서ChiA, B 및 Glycos_transf_2 유전자를 포함하는 CWDE의 전사체 수준은R. necatrix와의 공동 배양에 의해 향상되었다. 결론적으로, 본 연구에서는 B. thuringiensis C25가 R. necatrix를 제어할 수 있는 생물학적 소재가 될 수 있으며, 식물 병원체에 대한 BCA의 항진균성 메커니즘의 이해를 촉진할 수 있음을 제시하였다.

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.