• Title/Summary/Keyword: Wall force

Search Result 919, Processing Time 0.027 seconds

A Study on the Characteristics of Member Force, Horizontal Displacement and Concrete Strength by Design Elements of SPW Retaining Walls (SPW 흙막이 벽체의 설계요소별 부재력과 수평변위 및 콘크리트강도 특성 연구)

  • Wan-Ho Kim;Yu-Seok Shin;Yeong-Jin Lee;Yong-Chai Chang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In areas where excavation works are carried out, it is very important to select a retaining wall method to minimize ground water level and ground subsidence changes. In this regard, the use of Secant Pile Wall(SPW) method, which can complement the disadvantages of the CIP method, is gradually domestic increasing for the construction of retaining wall method. This study investigated the design elements of the SPW method and the interrelationship between the structural stability factors of the wall. The design elements for the retaining method are the overlap length between piles, pile diameter, and the specifications of the H-Beam specifications, while the structural stability factors of the wall are the bending stress, shear stress, horizontal displacement, and concrete strength. The study results showed that the pile diameter and H-Beam specifications have a significant impact on the capacity of the H-Beam, the overlap length and pile diameter have a significant impact on the horizontal displacement, and the pile diameter and H-Beam specifications have a significant impact on the required strength of the concrete.

Fabrication of Nano-bridge Using a Suspended Multi-Wall Carbon Nanotube (다중벽 탄소나노튜브를 이용한 나노 브리지 제작)

  • Lee, Jong-Hong;Won, Moon-Cheol;Seo, Hee-Won;Song, Jin-Woo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.134-139
    • /
    • 2007
  • We report the suspension of individual multi-walled carbon nanotubes (MWNTs) from the bottom substrate using deep trench electrodes that were fabricated using optical lithography. During drying of the solution in dielectrophoretic assembly, the capillary force pulls the MWNT toward the bottom substrate, and it then remains as a deformed structure adhering to the bottom substrate after the solution has dried out. Small-diameter MWNTs cannot be suspended using thin electrodes with large gaps, but large-diameter MWNTs can be suspended using thicker electrodes. We present the statistical experimental results for successful suspension, as well as the feasible conditions for a MWNT suspension based on a theoretical approach.

Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor (소형 왕복동 압축기의 동적 거동 및 윤활특성 해석)

  • Kim, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.

A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow (고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구)

  • 송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.

Cyclic Loading Test of Interior Deep-Beam Lower-Column Joint in Upper-shear Wall Lower-Frame Structure (주상복합구조에서 전이보와 내부기둥 접합부의 반복횡하중 실험)

  • 이한선;김상연;고동우;권기혁;최성모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.446-451
    • /
    • 2000
  • In case of strong earthquake, upper-sheat wall lowe-frame structures show the weak-story failure at lower part. Where we should guarantee sufficient strength, energy dissipation capacity and ductility. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblages including the interior column and the deep beam, were constructed. Experimental parameters include transverse reinforcement ratio and axial force. The non- linear behavior of the subassemblages subjected to the cyclic lateral displac-ement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the results of the tests on 4 specimens, it is concluded that the strength increased as the axial force increased and the ductility increased as the transverse reinforcement ratio increased.

  • PDF

The Size of Crowd Pressure According to Number of Persons (가력 인원수에 따른 군중하중의 크기에 관한 실험적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.93-94
    • /
    • 2016
  • The resistance of crowd pressure is an important performance to be influential on safety of facility users among performances required for light weight walls of public facilities. This study has empirically evaluated the estimation of size of crowd pressure to be applied to a wall of structure. For the load analysis test, the force plate with stiffness of 28 kN/cm was designed and manufactured. For inspectors, 15 males in the age of 20s were selected. The action of putting load was set as instantaneous push of plate and continuous push. As the load was increased linearly from the weight of inspector, the size of load was indicated as the load ratio. In case of instantaneous force, about 1.18 times the weight of pushing personnel was acted as a load. In case of continuous push, about 0.80 times the weight of pushing personnel was acted as a load.

  • PDF

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami (지진 및 지진해일파 작용하의 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Ha, Sun-Wook;Lee, Kui-Seop;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.41-54
    • /
    • 2011
  • The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System (전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능)

  • Chung, Hee-San;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won;Byeon, Ji-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

Pressure Distribution and Caisson Stability of Perforated Breakwaters (유공 방파제의 파압분포특성과 안정도)

  • 전인식;박우선;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Hydraulic experiments were performed in order to gain an insight into the quantitative differences between the perforated wall caisson and its solid wall counterpart in the local pressure distribution and caisson stability. The results showed that the wave forces acting on local walls were smaller in the perforated wall caisson than in the solid wall caisson. For the caisson stability, the critical weights of the perforated wall caisson also turned out to be smaller than those of the solid wall caisson. The Phenomenon was attributed to the dual effects inherent to the perforated wall caisson, which are the decrease of total horizontal force and the phase difference between the total horizontal and vertical forces.

  • PDF