• Title/Summary/Keyword: Wall flow

Search Result 2,971, Processing Time 0.038 seconds

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

A Study of Heat Transfer during Freezing Process of Water in a Vertical Cylinder - Comparison of thermal storage performance on the working fluid direction - (수직원통형 축열조내 물의 응고과정시 열전달에 관한 실험적연구 - 작동유체의 유동방향에 따른 열저장성능 비교 -)

  • Heo, K.;Kim, Y.K.;Kim, Y.J.;Kim, J.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.77-90
    • /
    • 1995
  • An effective heat transfer during freezing process was proposed in the vertical cylinder to improve the effectiveness of the heat storage. Vertical cylinder was filled with pure water in order to investigate ice-shape, temperature distribution of the liquid, temperature distribution of the cylinder tube wall, total heat storage per unit mass in the test section under the two experimental conditions; inlet temperature of working fluid is constant($-10^{\circ}C$) and inlet direction of working fluid is either upward flow or downward. Both the mean temperature of the liquid and temperature difference of cylinder tube wall in the upward were lower than those in the downward. In case that the initial temperature of water was $7^{\circ}C$ and $4^{\circ}C$, the shape of ice layer in the upward was more uniform than that in the downward. In case of $1^{\circ}C$, the shape of ice layer is formed by inlet direction of working fluid. Finally, time-varying total heat energy stored in the water in the upward was higher than that in the downward.

  • PDF

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Effects of Ventilation Systems on Interior Environment of the Growing-finishing Pig House in Korea (육성$\cdot$비육돈사 내에서 환기형태별 환경조사 연구)

  • Song J. I.;Yoo Y. H.;Jeong J. W.;Kim T. I.;Choi H. C.;Kang H. S.;Yang C. B.;Lee Y. Y.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventilation efficiency in an enclosed and conventional growing-finishing pig house. The experimental pigs were in winter and summer. The main results of the experiment are as follows : Then the air from planar slot inlet the pig house flow out through the sidewall outlet operated by exhaust fan(Gl). The second structure has an air input through the circular duct inlet are plated side the juncture of the entering wall and the air into the pig house flow out through the chimney and pit outlet are operated by exhaust fan(G2). Through the air into relay fan the pig house flow out through the curtains in sidewall(G3). Similarly, air comes in through the circular duct inlet are placed the air into the pig house flow out through the curtains in sidewall (G4). Air flow rate on the floor level which is the low part of pen and the living area of pigs in the G2 and G4 system during winter was measured at 0.2 to 0.3 m/s at the 0.5 to 0.6 m/s at the maximum ventilation efficiency. As for the results of detrimental gas(ammonia) concentration ratio analysis, while G2 and G4 system sustained of summer 13.3 $\~$ 16.6 ppm, winter 14.0 $\~$ 14.6 ppm level, Gl and G3 system sustained of summer 14.6 $\~$ 20.3 ppm, winter 20.3 $\~$ 25.0 ppm, and the latter one is lower than that of the G1 and G3 system.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets- (그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 1995
  • In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets 5. Total Resistance of Bottom Trawl Nets Subjected Simultaneously to the Water Flow and the Bottom Friction (그물어구의 유수저항과 모형수칙 5. 저층 트롤그물의 예망저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.700-707
    • /
    • 1997
  • In order to express exactly the total resistance of bottom trawl nets subjected simultaneously to the water flow and the bottom friction, the influence of frictional force was added to the formular for the flow resistance of trawl nets obtained by previous papev and the experimental data obtained by other investigators were analyzed by the formula. The analyzation produced the total resistance R (kg) expressed as $$R=4.5(\frac{S_n}{S_m})^{1.2}S\;v^{-1.8}+20(Bv)^{1.1}$$ where $S(m^2)$ was the wall area of nets, $S_m\;(m^2)$ the cross-sectional area of net mouths, $S_n\;(m^2)$ the area of nets projected to the plane perpendicular to the water flow, B (m) the made-up circumference at the fore edge of bag parts, and v(m/sec) the dragging velocity. From the viewpoint that expressing R in the form of $R=kSv^2$ was a usual practice, however, the resistant coefficient $k(kg{\cdot}sec^2/m^4)$ was compared with the factors influencing it by reusing the experimental data. The comparison gave that the coefficient k might be expressed approximately as a function of BL only and so the resistance R (kg) as $$R=18{\alpha}B^{0.5}L\;v^{1.5}$$ where L (m) was the made-up total length of nets and $\alpha=S/BL$. But the values of a in the nets did not deviate largely from their mean, 0.48, for all the nets and so the general expression of R (kg) for all the bottom trawl nets could be written as $$R=9\;B^{0.5}\;L\;v^{1.5}$$.

  • PDF

Flame and Carbonization Patterns of Animal-Origin Foods Ignited by Overheating (과열에 의해 발화된 동물성 식품의 화염 및 탄화 패턴에 관한 연구)

  • Lee, Jeong-Hun;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • Real-scale fire tests were performed on animal-origin foods using a gas stove with no overheating prevention device. When the animal-origin foods were ignited, a large quantity of white smoke and steam was generated from them; however, when they became dry and began to carbonize, a dark smoke was generated. Even after the gas stove was overheated for more than 5400 s, mackerel, pollack, chicken, etc., did not ignite. However, pork, beef, and tuna caught fire after 2643 s, 2819 s, and 6492 s of heating, respectively. The flame patterns of animal-origin foods were in the forms of a mixed laminar flow and a turbulent flow, and a halo pattern was produced. A sand glass form of the flame pattern was generated when a kitchen hood was operated, but a triangular flame pattern was produced when the kitchen hood was not operated. When the tuna in the pot was overheated, it spontaneously ignited after 6492 s, with the surface temperature of the kitchen hood rapidly rising to 464.5 ℃. Moreover, the temperature at the back of the pot, which was 6 cm away from the outer surface of the upper part of the pot, was 869 ℃ after 6660 s because of the radiant heat. The flame formed a sand glass pattern on the kitchen wall. When the kitchen hood was not operated, or when the flame grew lower than the height of the ceiling, a triangular pattern was formed.

Heat-Transfer Performance Analysis of a Multi-Channel Volumetric Air Receiver for Solar Power Tower (타워형 태양열 발전용 공기흡수기의 열전달 성능해석)

  • Jung, Eui-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • In this study, a heat-transfer performance analysis is carried out for a multi-channel volumetric air receiver for a solar power tower. On the basis of a series of reviews regarding the relevant literature, a calculation process is proposed for the prediction of the wall- and air- temperature distributions of a single channel at given geometric and input conditions. Furthermore, a unique mathematical model of the receiver effectiveness is presented through analysis of the temperature profile. The receiver is made of silicon carbide. A total of 225 square straight channels per module are molded to induce the air flow, and each channel has the dimensions of $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$. The heat-transfer rate, temperature distribution and effectiveness are presented according to the variation of the channel and module number under uniform irradiation and mass flow rate. The available air outlet temperature applied to the solar power tower should be over $700^{\circ}C$. This numerical model was actually used in the design of a 200 kW-level commercial solar air receiver, and the required number of modules satisfying the thermal performance could be obtained for the specified geometric and input conditions.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.