• Title/Summary/Keyword: Wall deflection

Search Result 137, Processing Time 0.027 seconds

Permissible Criteria of the Stiffness of Lightweight Wall by the Horizontal Static Load (정적 수평하중에 의한 경량벽체의 최대변형량 허용기준에 관한 연구)

  • Song, Jung-Hyeon;Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.204-205
    • /
    • 2014
  • Among common test methods of assessing structure safety for existing lightweight walls, the criteria of the quality assessment of the horizontal static load resistance has been considered ambiguous. In the current study, therefore, an experiment was conducted to figure out the standardized assessment criteria of the lightweight wall's horizontal static load resistance. Based on the findings of the experiment with gypsum board and ALC block walls, an acceptable amount of each standard and the variables of the stud wall arising from the appropriate load (1000N) on the wall in a daily life were accounted for, arbitrarily setting the maximum deformation amount below 15mm.

  • PDF

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model

  • Farajpour, Ali;Ghayesh, Mergen H.;Farokhi, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.71-81
    • /
    • 2019
  • The objective of this paper is to develop a size-dependent nonlinear model of beams for fluid-conveying nanotubes with an initial deflection. The nonlinear frequency response of the nanotube is analysed via an Euler-Bernoulli model. Size influences on the behaviour of the nanosystem are described utilising the nonlocal strain gradient theory (NSGT). Relative motions at the inner wall of the nanotube is taken into consideration via Beskok-Karniadakis model. Formulating kinetic and elastic energies and then employing Hamilton's approach, the nonlinear motion equations are derived. Furthermore, Galerkin's approach is employed for discretisation, and then a continuation scheme is developed for obtaining numerical results. It is observed that an initial deflection significantly alters the frequency response of NSGT nanotubes conveying fluid. For small initial deflections, a hardening nonlinearity is found whereas a softening-hardening nonlinearity is observed for large initial deflections.

Powell이s Algorithm for Back Analysis of Anchored Wall (파웰의 최적화 기법을 이용한 앵커토류벽의 역해석)

  • 김낙경;박종식;신광연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.271-278
    • /
    • 2002
  • Recently, deep excavation for high-rise buildings occurs frequently to accommodate the rapidly increasing population in urban area. The stability of the earth retaining structures for deep excavation becomes more critical. The behavior of the earth retaining structures should be accurately predicted in a design stage, but the predicted behavior is different from the measured data due to uncertain soil properties and problems in construction. In this study the back-analysis using Powell's optimization theory was performed to match the measured deflection and results obtained from back-analysis were presented.

  • PDF

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.

Earth Pressuroes of Tieback Walls in Sand (사질토에 시공된 앵커토류벽의 토압분포에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-28
    • /
    • 1998
  • The design of a ground anchor wall calculating the design anchor force and anchored walls depends primarily on the earth pressure acting on anchored w deflection of the wall, the wall stiffness, distribution exists for anchored walls. In the apparent earth pressure envelope design of anchored walls. In this study, full scale anchored w pressure distribution was obtained from function. Earth pressures obtained from pressure and with the apparent earth pre the anchored wall in sand. It is conclude is appropriate for the anchored wall design.

  • PDF

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Investigation of Bracket Deflection Influence on Structural Safety of Scaffold System (브라켓의 변위가 비계 구조 안전성에 미치는 영향 분석)

  • Kim, Dong Hyun;Lee, Hyung Do;Won, Jeong-Hun;Jung, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • This study examined the structural behavior of bracket scaffolds reflecting the influence of bracket's deflection. Even though the supporting condition of bracket scaffolds is different to that of general earth-supported scaffolds, there is no clear standards about the installation of bracket scaffolds. To compare the structural behaviors of the earth-supported scaffolds without settlements in columns and those of bracket scaffolds installed on the bracket structure, the finite element analysis was performed. The results show that the differential settlement between the scaffold columns installed on the bracket was occurred due to the deflection of the bracket. The differential settlement gave birth to remarkable secondary stress to the scaffold columns. It is resonable to locate all scaffold columns on the brackets, and if unavoidable situation is faced at a site, the horizontal members should not placed alone without columns on the brackets. Moreover, the structural analysis should be performed to ensure structural safety of bracket scaffolds before installation. In addition, the location of wall connection to the structures is recommended to the scaffolds columns installed on the brackets.

Stress Analysis on the Profile of Blast Wall with Finite Element Method (유한요소법을 이용한 방폭벽 프로파일에 대한 응력해석)

  • Kim, Byung-Tak;Koh, Sung-Wi;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.130-137
    • /
    • 2012
  • Blast walls are integral structures at the typical offshore topside module to provide safety barriers for personnel and critical equipment against any blast loading and hydrocarbon explosions. The blast wall structures are usually configured with stainless steel. It can be referred as the good mechanical properties of the stainless steel against blast load, which features the characteristics of significant energy absorption and ductility. In this study, the proposed designs of corrugated panel are examined in order to determine the best design which satisfies the design criteria. The criteria on maximum deflection and stress are used to decide the best design. The effect of inclined angle of profile on deformation characteristics of blast wall is also performed. The numerical study was performed by using NX Nastran 7.5.