• Title/Summary/Keyword: Wall Storage System

Search Result 107, Processing Time 0.019 seconds

SS Removal-rate Efficiency of Storm-water Detention Storage Tank Depending upon Length, Inside Training Wall and Gravel Filling (우수저류조의 형상과 도류벽 및 자갈채움에 따른 SS 제거효율)

  • Lee, Jong Tae;Seo, Hong Joon;Seo, Kyung A
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.655-667
    • /
    • 2009
  • An experimental study is performed on reducing the pollutants supplied by storm water through enhancing efficiency of SS from the detention storage tank where CSOs are kept temporarily before discharge to the receiving water system. SS removal efficiency is investigated in accordance with various conditions of the detention pond-such as its length, the existence of training wall, and the use of gravel filling. The removal efficiency is strongly affected by the detention pond's length until the critical falling distance of the suspended solids is reached. For cases where the tank has a length longer than this critical condition, the removal rate shows less sensitivity. To enhance the SS removal efficiency of tanks of shorter than the critical length, we studied alternative types of tank in which inside training walls are installed. The results showed improvement of 14 to 37% in removal efficiency in 2hours detention(2 training walls). The important factor in achieving a high SS removal rate is ensuring the critical length of the detention pond, but for the cases where the basin length cannot be guaranteed, baffles or a gravel filling scheme may be introduced to attain considerable efficiency. The results of studying and comparing different storage tank conditions show that, in terms of elimination efficiency, a storage tank with gravel filling and training walls > a storage tank with gravel filling > a storage tank with training walls > an empty tank. The experimental results should contribute to development of related further research, by empirically verifying the already assumed importance of critical falling distance, training walls, and gravel filling schemes.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

Prevention of Soil Contamination from Underground Storage Facilities (유류저장시설로 인한 토양오염 예방대책)

  • 배우근;홍종철;정진욱;강우재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.169-173
    • /
    • 1998
  • The practice of the construction and management of the underground petroleum storage facilities in Korea was investigated extensively, and the problems were identified. The advanced technologies in the U.S.A was comparatively studied. Considering the effectiveness of leak prevention and technology applicability, the following measures were suggested. To prevent corrosion of the tank, a clad tank, an interior-lining tank, or a double-wall tank was appropriate and appeared to be most cost effective. For piping, non-metalic material was suggested. To prevent spill, a catchment basin can be effective. For monitoring of leak, construction of more than one of one or combination of an automatic leak-detection device, a vapor-detection system, a ground water-monitoring system, and a double-wall detection system was recommended.

  • PDF

Experimental Study of Radiation Heat Flux for the Pool and Spill Fire in Petroleum Storage Tanks (석유류 저장 탱크에서의 액면 및 유츌화재에 대한 복사열의 실험적 연구)

  • Kim, Hong;Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • This experimental study was carried out to evaluate effect of the radiation heat flux for the pool and spill fire in petroleum storage tanks, which were made form steel. Each of them had the capacity of 250, 2500 and 25000 liter, respectively. The effects of the radiation heat flux are as follows; 1) The intensity of radiation heat flux from a flame decreased exponentially with increasing distance from outside wall of tanks, and increased significantly with surface area of tank and dyke. 2) In the case of 25000L tank, the radiation heat flux was about max. 98.9kW/$m^2$ in 1m from wall of tank. 3) The distance, that was able to ignite wood or plastics by radiation heat flux of approximately 12.5kW/$m^2$, was about 3.14m from wall of 25000L tank.

Comparison of Annual Heating and Cooling Loads of Internally and Externally Insulated Apartment Buildings According to the Location of Thermal Mass (내, 외단열 공동주택의 축열체 위치 차이에 따른 동단위 연간 냉난방부하 비교평가)

  • Koo, Bo-Kyoung;Lee, Beung-In;Choi, Doo-Sung;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • The IIS(Internal Insulation System) is applied in most Korean apartment buildings which are the most common type of residential buildings. Consequently, there are many cases in which the layer of insulation is disconnected by the structural components at the wall-slab and wall-wall joints in the envelope. These joints become thermal bridges where the risk of heat loss increases. It is expected that the EIFS(External Insulation and Finish System) is the solution to this problem. In this study, annual heating and cooling loads of apartment buildings with IIS and EIFS were compared using Design Builder program in order to evaluate the thermal storage effect of EIFS where the concrete thermal mass is located inside of the insulation material. As results, the apartment building with EIFS could reduce annual heating and cooling loads by 2.4% and 4.1%, respectively.

Characteristic of heat storage/release in chemical heat pump using the calcined dolomite (소성 Dolomite를 이용한 화학열펌프내의 축·방열특성)

  • Hong, Min-Hyuk;Lee, Young-Sei;Choi, Hyun-Kuk;Park, Young-Hea;Kim, Jong-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.191-196
    • /
    • 2005
  • This study was carried out to investigate the heat storage/release characteristics of the thermochemical reaction of the calcined dolomite with the packed bed shape experimental apparatus for development of chemical heat pump system. In the present study, it was found that MgO of the calcined dolomite was not hydrated during the hydration process under the experimental conditions. Therefore, the MgO of the calcined dolomite can be regard as an inert material. As a result, it was found that all of CaO packed kept the reaction temperature of about $510^{\circ}C$ through the entire part of the bed. The dehydration reaction was incurred first at the wall side area as the supplied heat was transferred through the wall side into the packed bed. As a result of the temperature and concentration spread, the reaction was completed at the wall side progressed into the center.

  • PDF

Research of Wall Storage System design process for residential space (주문형 주거공간에서 Wall Storage System을 활용한 가변화 방안 연구)

  • 임은상
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.281-292
    • /
    • 2000
  • Today, the rapid economic growth and emerging new trends have been changed radically throughout the society and they especially have affected the changes of life-style and the diversity of residents'demands in housing life. This changes of life have brought the shift in family form from traditional type, thus new phase of nuclear family means that it makes on the whole, variable family forms such as single family, non-blood one, a generation one and so on. It therefore is time that we should not only explore current housing plans, but envisage concept of new living space to satisfy latent need of the occupants. But the forms, in spite of the diversity of user's needs and the change of life-style, of many houses as many apartment and tenement houses supplied so far have been clearly limted, and housing policy of the mass-supply causes monotonous space composition, over-occupation and non-changeability. Now, the collective houses have some limits owing to the commoness and assemblage, but they have failed to keep up with the variable and changeable life-style of residents. These problems, to put it concretely, lead to increasing needs for the number of rooms in proportion to family members, for the change of behavior using the space. We therefore need to propose the new living space. As the current plans for designing house are based on the average life-style of people, they can not cope with variable demands of the resident. For that reason, this paper will propose the manual space system as an alternative for it and the goal is to suggest new furniture system which we need to create the flexibility of living space.

  • PDF

A Sensitivity Analysis of Design Factors of Air-Conditioning System with Slab Thermal Storage (슬래브축열 시스템 설계인자의 감도해석)

  • Jung, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.590-595
    • /
    • 2008
  • In this paper, the sensitivity analysis was examined about the main factors that compose an air-conditioning system with slab thermal storage by using the analytic solution. Those factors are the insulation performance of floor slab surface, the slab thickness, the heat capacity of floor slab, the air change rate, and the insulation performance of the wall. The slab thickness and heat capacity of floor slab that minimize heating loads was gained by sensitivity analysis. It is became clear that the insulation performance of slab surface, high airtightness and high heat insulation are important design factors in air conditioning system with slab thermal storage.

  • PDF

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.