• Title/Summary/Keyword: Wall Roughness

Search Result 174, Processing Time 0.03 seconds

Turbulent flow in annuli depending on the position of roughness (거칠기 위치에 따른 이중관 내의 난류유동)

  • An, Su-Hwan;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

The Effect of Tube Orientation on Pool Boiling Heat Transfer (튜브 설치 방향이 풀비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.143-151
    • /
    • 2000
  • In order to clarify the effect of tube orientation on pool boiling heat transfer, the experiments were carried out for the saturated pool boiling of water at atmospheric pressure. Through the tests a series of data sets for heat flux versus wall superheat has been obtained using various combinations of tube diameters (D=9.7 $\~$25.4mm), surface roughness ($\varepsilon$=15.1$\~$60.9nm), and tube orientations (horizontal and vertical). ηei experimental results show that the slope of heat flux versus wall superheat becomes smaller than that of the horizontal tube as the surface roughness decreases from $\varepsilon$=60.9 to $\varepsilon$=15.1nm. Such that, two curves for the horizontal and vertical tubes cross each other in accordance with surface roughness and the crossing point can be suggested as q" = ‘-4.768+1.334$\varepsilon$+0.055${\varepsilon}^2$.

Modelling of Rock Joint Shear Strength Using Surface Roughness Parameter, Rs (표면 거칠기 계수 Rs를 이용한 암석 절리면 전단강도 모델)

  • 이석원;배석일;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.73-80
    • /
    • 2001
  • The shear strength of jointed rock is influenced by effective normal stress, joint wall compressive strength, joint roughness and so on. Since joint roughness makes considerable influences on shear strength of jointed rock, many studies tried to get quantitative joint roughness parameter. Until now, Joint Roughness Coefficient, JRC proposed by Barton has been prevalently used as a rock joint roughness parameter In spite of its disadvantages. In this study, a quantification of rock joint roughness is performed using surface roughness parameter, Rs. Proposed method is applied to rock core specimens, field joint surfaces, and JRC profiles. The scale of fluctuation is introduced to extend the suggested method to the large scale field joint surface roughness. Based on the quantification of joint surface roughness, joint shear tests are performed with the portable shear box. The relationship between joint surface roughness and joint shear strength is investigated and finally, a rock joint shear strength equation is derived from these results. The equation has considerable credibility and originality in that it is obtained from laboratory tests and expressed with quantified parameter.

  • PDF

Characteristics of a Turbulent Boundary Layer on the Flat Plate with Sudden Change in Surface Roughness (급격한 조도 변화가 있는 평판 위에서 난류경계층의 특성에 관한 실험적 연구)

  • 강신형;유정열;이정민;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2349-2357
    • /
    • 1992
  • Experimental were performed to investigate the turbulent boundary layer over the flat plate when the surface roughness undergoes a step change from rough to smooth under zeoro pressure gradient. well sthear stress was measured by the Computational Preston Tube Method(CPM). The inner layer near the wall adapts rapidly to a new surface condition but the outer flow far from the wall rather slowly. After a sudden change of roughness, the values of wall shear stress discontinuously reduces and then slowly approaches to the value in the equilibrium boundary layer at the down stream. The variation of the von Karman constant indirectly measured by CPM method shows that the flow near the wall at the downstream is highly non-equilibrium state.

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

Estimation Method of the Design Wind Load of Soundproof Wall Using GIS (GIS를 이용한 방음벽의 설계풍하중 산정방법)

  • Lee, Dong-Ho;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.75-85
    • /
    • 2015
  • Recently deformed or destroyed of soundproof wall by local winds and typhoon has increased. This research proposed the estimation method of the design wind load of soundproof wall using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. According to the result of quantitative evaluation using GIS, the surface roughness in the downtown area packed with buildings was III and the surface roughness in the suburban district with a relatively small number of buildings was II and the surface roughness in the district packed with open areas and typical farmhouses was I. This shows that the wind load of the soundproof walls reflecting the actual surface conditions was estimated. If the quantitative GIS analysis presented in this study is applied to wind-resistant design of soundproof walls, it is supposed that this will be helpful in more rational wind-resistant design by remedying the existing problem in which the wind load varies depending on designer's subjectivity.

COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL (파형벽면이 있는 채널 유동의 응집 구조 연구)

  • Chang, Kyoung-Sik
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.