• Title/Summary/Keyword: Wall Loss

Search Result 785, Processing Time 0.028 seconds

Method of how to improve transmission loss of dry walls (조립형 건식벽체의 차음성능 개선 공법에 관한 연구)

  • Kim, Kyungho;Jeon, JinYong;Kim, SungHoon;Lee, HyungKi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.719-724
    • /
    • 2013
  • In the case of newly developed stud which has more performance of sound transmission loss, it is expected that sound would transmit through runner than stud. so we developed construction method of runner and stud. As a result, sound transmission loss is improved about 2 dB by using this method. But this construction method could be applied to only newly developed stud. In addition, sound leak of wall joint is about 2 dB, and it could be improved by using rubber gasket at joint.

  • PDF

Pressure Loss and Heat Transfer Characteristics of the Glass Bead - Water Flow in a Vertical Tube (수직관내 유리알-물 유동의 압력손실 및 열전달 성능)

  • 김내현;김정식;이윤표
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.121-131
    • /
    • 1996
  • Recently, circulating liquid fluidized bed heat exchangers are widely used in a number of places - chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. It also increased as the particle diameter increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.405-408
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall/floor of tiling train and predict the interior noise for tilting train using its measuring results.

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Characteristics of Isolator for material parameter (페라이트 소재변수에 따른 아이솔레이터 특성 연구)

  • Jun, Dong-Suk;Lee, Hong-Yeol;Kim, Dong-Young;Lee, Sang-Seak
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.119-122
    • /
    • 2003
  • This paper describes characteristics for insertion losses of Isolator have an effect on material parameter. One purpose of the paper is to present insertion loss on this resonator for magnetic loss, dielectric loss, magnetic field and saturation magnetization. Another is to study the effect of propeller resonator on response characteristics. In this paper, the analysis and measurement of the response characteristics were carried out for the isolator prototype. The measurement results agreed on the simulation results and acquire insertion loss $0.18\;{\sim}\;0.24dB$, return loss 27dB, isolation 27dB and bandwidth 500MHz on this condition saturation magnetization 550G, dielectric loss 0.0004, magnetic loss 20 and dielectric constant 14.

  • PDF

Dynamic Analysis of the Piston Slap Motion in Reciprocating Compressors

  • Kim, Tae-Jong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.411-412
    • /
    • 2002
  • Piston-cylinder system are widely used in power engineering applications. In reciprocating refrigeration compressors, where extremely low friction losses are required, ringless pistons are being used to diminish the friction between piston rings and cylinder wall. Since the ringless piston has the freedom of lateral motion there is a potential danger that it will occasionally hit the cylinder wall while moving up and down along it's axis. A good design must therefore provide a smooth and stable reciprocating motion of the piston and ensure that the fluid film separating the piston from the cylinder wall is maintained all times. And the compromise between refrigerant gas leakage through the piston-cylinder clearance and the friction losses is required utilizing a dynamic analysis of the secondary motion for the high efficiency compressor. To this end, the computer program is developed for calculating the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses.

  • PDF

A Study on the Evaluation and Countermeasure of Electromagnetic Interference due to Buildings in TV Frequency Band (건축물에 의한 TV주파수대 전자파장해의 평가 및 대책에 관한 연구)

  • 박재석;김동일;박연준;이창우
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 1998
  • In this paper, we have performed a numerical calculation of the scattered electromagnetic field around the building to evaluate electromagnetic interference caused by the building in the TV frequency band. The relations between the exposed concrete area of a building wall and the magnitude of the reflected wave have been examined in the case that the electroagnetic wave absorbers partially cover the building wall. From the obtained scattered electromagnetic field, we have calculated the DU radio and the required reflection loss of the electromagnetic wave absorbers which attached on the building wall to protect TV ghost.

  • PDF

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Evaluation of Thermal Utilization of Dousing System in PHWR Nuclear Power Plant

  • Nam, S.D.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.42-52
    • /
    • 1999
  • An effectiveness of thermal utilization of a dousing system in the 600 MW PHWR Nuclear Power Plant has been evaluated. The behavior and conditions of water droplet sprayed in a postulated accident conditions in containment configuration has been calculated. In this calculation, two pressure conditions with the consideration of obstruction area and containment wall effect has been established : one being the minimum containment pressure of 7 kPa(g) encountered for dousing shut off and the other being the containment design pressure 124 kPa(g). The results revealed that the effectiveness of the thermal utilization ranges from 93% to 97%. In the analysis on two cases without/with side wall effect in the containment building, the thermal utilization decreases with obstruction area from 89% to 85%, which satisfies the design criteria set for the containment pressure against the accident condition.

  • PDF