• Title/Summary/Keyword: Wall Friction

Search Result 503, Processing Time 0.027 seconds

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils : Study on the Application by Model Test (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압 : 적용성 연구)

  • 천병식;신영완;문경선
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • It is known that the earth pressure acting on the cylindrical retaining wall in cohesionless soils is small than that acting on the retaining wall in plane strain condition due to three dimensional arching effect. In this study, the earth pressure equation considering the earth pressure decrease by horizontal and vertical arching effects, overburden, wall friction, and failure surface slope is proposed. For the purpose of verifying the applicability of proposed equation, model test is performed with apparatuses that can control wall displacement, wall friction, and wall shape ratio. Influence of each factor on the active earth pressure acting on the cylindrical retaining wall is analyzed according to the model test in constant wall displacement condition. The comparison of calculated results with measured values shows that the proposed equations satisfactorily predict the earth pressure distribution on the cylindrical retaining wall.

Analytical and ANN-based models for assessment of hunchback retaining walls: Investigating lateral earth pressure in unsaturated backfill

  • Sivani Remash Thottoth;Vishwas N Khatria
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.285-305
    • /
    • 2024
  • This study investigates the behaviour of hunchback retaining walls supporting unsaturated sandy backfill under active earth pressure conditions. Utilizing a horizontal slice method and a unified effective stress methodology, the influence of various factors on lateral earth pressure, including the position of the hunch along the wall, friction angles, and wall heights, is explored. The results suggest that relocating the hunch position from close to the wall's top to near its base leads to a significant decrease (ranging from 54% to 81%) in lateral earth pressure. However, as the hunch position transitions from near the top to mid-height, the point of application of active thrust shifts upward initially, then slightly downward as the hunch position approaches the toe. Notably, the reduction in lateral earth pressure is more pronounced for shorter wall heights and higher friction angles. Building upon these findings, an Artificial Neural Network (ANN)-based model is developed to accurately predict the lateral earth pressure coefficient and point of application, achieving R2 values of 0.94 and 0.93, respectively. In addition, an analytical model based on Coulomb's earth pressure theory is presented and compared with ANN models. These models are anticipated to assist designers and practitioners in optimizing hunchback retaining walls for unsaturated backfill.

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김진형;홍성인;이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

Experimental Study on Frictional Drag Reduction of Turbulent Flow by Polymer Solution Injection (폴리머 수용액 주입에 의한 난류마찰저항 감소에 대한 실험 연구)

  • 김형태;김덕수;김우전
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.9-15
    • /
    • 2003
  • An experimental study has been carried out as a basic research for development of the friction drag reduction technology for ships by polymer injection. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with injection of a polymer solution and basic experimental data on the friction drag reduction are obtained for a turbulent fiat-plate boundary layer and fully-developed channel flows. Variations of the friction drag reduction with some important parameters of polymer injection, such as the concentration of polymer solution, its injection flow rate and the measuring position downstream from the injection slot, are also investigated. Important experimental data and results obtained in the present study are presented. The amount of friction drag reduction up to 50% is observed.

Effect of Rib Pitch on Heat Transfer and Friction Factor in a Two Wall Divergent Channel (2벽면 확대 사각채널에서 리브 피치가 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Jeong, Seong Soo;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.175-180
    • /
    • 2014
  • Experimental investigations of the heat transfer and friction factors in the ribbed divergent rectangular channel with the channel exit hydraulic diameter to inlet hydraulic diameter ratio of 1.16 were performed. The surface heaters were mounted onto the two opposite walls. The main experimental parameter is the ratio of rib pitch (p) to height (e), at which the ratios (p/e) of 6, 10, and 14 are considered in the channel with ribs on one wall only. The straight ribbed square channel is also considered as a comparison. The major findings are that the ratio of p/e = 6 shows the highest values in the heat transfer and the ratio of p/e = 10 indicates the greatest friction factor in the ribbed divergent channel. Editor's note:No major changes or corrections needed. Well written.

Development and validation of wall and interfacial friction models in LOCUST for reactor downcomer with direct vessel injection

  • Rongshuan Xu;Xinan Wang;Caihong Xu;Dongyu He;Ting Wang;Jinggang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4397-4403
    • /
    • 2024
  • The multi-dimensional thermal-hydraulic phenomena in the downcomer of advanced pressurized water reactor with direct vessel injection system are the key points for the safety analysis during a loss of coolant accident. In order to improve the accuracy of LOCUST code for the predictions of thermal-hydraulic phenomena in downcomer region, some newly correlations have been implemented into LOCUST code. The wall friction model of LOCUST code was modified based on the correlations which developed by Yang. The interfacial friction models in LOCUST code have been modified as Hibiki-Ishii correlations. In addition, in order to simulate the upward flow of recirculation flow in downcomer region, the Kinoshita-Hibiki correlations have been also implemented into LOCUST code for better simulating the recirculation flow in downcomer region. The modified code was validated with experimental data of DOBO facility. Five tests of DOBO facility have been calculated by LOCUST, and the calculated axial void fraction distributions have been compared with the measurements. The results show that the modified LOCUST with new correlations of distribution parameter and drift velocity shows better accuracy than the original code. The deviations of the modified LOCUST code are less than the original code and are almost within ±20 %.